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Passband filters with asymmetric zeros

❑ An asymmetric response allows a more flexible 

assignment of selectivity requirements, allowing at the 

same time to reduce the overall filter order

❑ Placing asymmetric zeros respect the center of the 

passband (f0) produce a response which is no more 

geometrically symmetric around f0

❑ The synthesis techniques based on the lowpass –

bandpass classical transformation cannot be directly 

employed (they implies a geometric symmetry in the 

bandpass domain)



Extension of the circuit components class

❑ In addition to capacitors, inductors, resistors and 

inverters, a new component is now introduced:

❑ Circuits including this new component present network 

functions with more general properties. In particular, 

the response around zero frequency can be asymmetric

❑ The synthesis of a lowpass prototype with FIR (FIB) 

components allows to obtain an asymmetric response 

(around f0) in the passband domain (after application of 

the classical lowpass – bandpass frequency 

transformation)  

The frequency-invariant reactance (FIR) / susceptance (FIB):

Z=jX, Y=jB



Are FIR significant from a physical point of view? 

❑ Strictly speaking FIR are not physically realizable, so 

synthesized networks containing FIR are not meaningful

❑ This is especially true around the zero frequency, 

where a FIR can not be even approximated with real 

component (concentrated or distributed)

❑ In the bandpass domain however, it is possible to obtain 

a reactance (susceptance) which does not present a 

relevant variation in a small range of frequencies. 

❑ So, a synthesized bandpass network containing FIR is 

significant from a practical point of view because it can 

be approximated with real components   



Positive and Positive-real functions

❑ Impedances (admittances) of networks with FIR (FIB) 

components are positive function in the complex 

frequency variable s (not positive-real as in case of R,L,C 

networks).

❑ A rational function f(s) in s is a positive function if 

Re{f(s)}≥0 for Re{s}≥0. (It is a positive-real function if f(s) 

is real for s real)

❑ Most of the properties of positive and positive-real 

functions are similar. The main differences are:

The coefficient of polynomials at numerator and 

denominator of a positive-real function are real (complex 

for positive functions)

The roots of the polynomials occur in complex conjugate 

pairs for positive-real function (no such restriction for 

positive function)



Characteristic polynomials for positive networks
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Assuming to be in the normalized domain s, the characteristic 

polynomials define the scattering parameters of a lossless 2-

port network:

All polynomials are assumed monic. The coefficients  and 

R are real number which are related each other.

Conditions to be verified (positive requirement):

-Coefficients of E and F are complex (with same degree n)

-Roots of E have negative real part (Hurwitz polynomial)

-Degree of P(s) ≤ n



Unitary of S matrix (Lossless condition)
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Characteristic polynomials of lossless networks

Roots of P:

-Imaginary

-Complex pairs with opposite real part
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Polynomial P (degree nz) must be multiplied by j when 

(n-nz) is even (consequence of matrix S unitary)

Feldtkeller equation:

Roots of F2:

- Equal to the negative conjugate of the roots of F:
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E(s) is defined once P(s) and F(s) are known



Relationship between  and r

❑ When nz<n:

❑ When nz=n (fully canonical condition)
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The approximation problem: the characteristic 

function Cn and polynomials P, F
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Applying the analytic continuation (j→s):
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Given Cn() (order n and imposed transmission zeros), 

it is possible to compute the characteristic polynomials 



The generalized Chebycheff characteristic function
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z,k are the assigned transmission zeros:

zPk are the roots of P(s), which must be imaginary or 

complex pairs with opposite real part. Cn() can be 

expressed in terms of the roots of P(s) and F(s)
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Evaluation of polynomials P(s), F(s) given Cn()

❑ Assign the order n and the transmission zeros zPk

❑ Evaluate Cn() (with z,k=zPk/j) for i= 1,…N, in the 

interval -1< i <1 (N>2n)

❑ Generate the vector 

❑ Find the coefficient of polynomial F’() by fitting F’(i)

with a polynomial of order n

❑ Find the roots F,k of F’(): F,k=zFk/j → zFk=jF,k

❑ Generate the polynomials F(s) and P(s) from their roots  

(zPk, zFk). Multiply P(s) by j if (n-nz) is even
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Evaluation of E(s) using lossless condition

The imposed RL determines :

If nz=n r is evaluated with the expression previously 

shown. Otherwise, r=1. 

The polynomial E2(s) is then evaluated as:
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The roots of E2 are computed and those with negative real 

part define the roots of E(s).

Finally, E(s) is obtained from its roots (it is monic)
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More efficient method (for imaginary zFk)

Let consider the following factorization of E2:
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The last equation is verified if the roots of F are imaginary 

or symmetric with respect the imaginary axis.

The roots of E(s) are obtained from the roots of Ea (or 

Eb), by assigning all the real part negative (i.e. by 

changing the sign of those which are positive)



Example: n=5, RL=26dB, zP={1.12i, 1.31i}
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Group Delay Evaluation

❑ Group Delay in  domain:
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Complex zero for phase equalizing

Introducing two complex zeros (±0.25-1.05i):

Max value in passband: 9 sec
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Max value in passband: 14 sec



Attenuation worsens!
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Synthesis of the filter in the normalized domain ()

❑ Filtering networks presenting transmission zeros can be 

classified in two very general categories:

 Crossed-coupled networks: the transmission zeros are 

generated by means of multiple paths which allow the 

output signal to vanish at some frequencies

 Extracted pole networks: each transmission zero (pure 

imaginary) is realized by means of a suitable impedance 

(admittance) which blocks the transmission between 

input at output at a specific frequency

❑ The networks synthesized in  are called prototypes. 

To obtain the network in the final bandpass domain w it 

is necessary to perform a de-normalization process.

❑ Prototypes with the number of transmission zeros equal 

to the number of poles are called fully canonical



Cross-coupled prototype networks

❑ General topology: conventional representation
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Given a set of polynomials F,P,E defining the generalized 

Chebyceff characteristic, it is always possible to find one (or 

more) topology for the cross-coupled network implementing 

the response determined by the assigned polynomials
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Minimum path rule

❑ Given a cross-coupled topology, the maximum number 

of transmission zeros which can be accommodated is 

determined by the “minimum path rule”:

“The maximum number of transmission zeros is 

equal to the prototype order (n) minus the 

number of nodes touched for going from the 

source to the load (np)”
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Canonical Prototypes

❑ There is a particular prototypes category whose 

topology can always be synthesized once the 

characteristic polynomials are assigned. The prototypes 

obtained are called canonical 

Most important canonical prototypes:
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Notes on Canonical Prototypes

❑ Not all the couplings are different from zero (this is 

true only for transversal prototype)

❑ In folded and wheel prototypes there are two kinds of 

couplings: the direct (those connecting sequential 

nodes) and the cross (those between not-consecutive 

nodes).

❑ The number of not-zero cross couplings depends on the 

number of transmission zeros (according to the 

minimum path rule)

❑ In the folded prototype cross couplings involving source 

and load are necessary when nz>n-2

❑ For fully canonical prototypes (nz=n) a coupling 

between load and source is requested



Examples
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Canonical prototypes with symmetric response

❑ Symmetric response in the normalized domain  is 

obtained with transmission zeros symmetrically placed 

around real axis

❑ The diagonal elements of M are null

❑ The corresponding prototype does not include FIR (FIS) 

elements (positive-defined network)

❑ The canonical prototypes networks have specific 

properties:

 Folded: oblique cross couplings are zero

 Wheel: cross couplings terminating on the load vanish 

alternately

 Transversal: couplings M1,k and Mk,n+2 have the same 

magnitude



Example

N=10, transmission zeros: [±1.23i, ±0.3±0.1i], RL=25
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Circuit analysis of cross-coupled prototypes: 

formation of the (n+2) x (n+2) admittance matrix Y
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Normalized Coupling Matrix M
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Evaluation of the scattering parameters from M

❑ The Y matrix is computed at frequencies s=jk:

The Z matrix is obtained by inverting Y:

❑ The matrix Z’ (2x2) is extracted from Zk by cancelling all 

rows and columns except the first and last:

❑ The scattering matrix of the prototype is computed from 

Z’: 

k kj j=  +nY U M

1

k k

−=Z Y

0,0 0, 1

0, 1 1, 1

n

k

n n n

Z Z

Z Z

+

+ + +

 
 =  

 
Z

( ) ( )
1

k k k

−
 = −  +S Z U Z U



De-normalization of prototype networks

❑ De-normalization consists in the network transformation 

from the normalized domain  to the bandpass domain f, 

using the classical frequency transformation: 

=(f0/B)(f/f0-f0/f)

❑ At circuit level, this transformation is obtained by 

replacing the unit capacitance with a shunt resonator. If 

also the external loads are scaled from 1 to G0 the 

correspondence  between normalized and de-normalized 

components are is the following:
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Approximated de-normalized resonators

jbq’ c’,f0 c’,fr,q

The resonators in a cross-coupled bandpass filter are in 

general no synchronous. The approximation is typically 

acceptable for (B/f0)<<1.

Note that the b’q do not influence the coupling coefficients, 

which must be evaluated at f0

Impose Y(fr,q)=0

2

,

0 0 0

1
2 2

r q q qf b bB B

f f f

 
= − + + 

 

, ,0 0 0
0

0 , 0 ,

0   
r q r q

q q q

r q r q

f ff f f
c b b

f f B f f
w

   
 − + = − + =    
   
   



De-normalized bandpass network

❑ The de-normalized network is constituted by coupled 

resonators with the following coupling coefficients:

❑ The resonant frequency of i-th shunt admittance 

results:

❑ External Q produced by the q-th resonator coupled to 

source (load):
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Dependence of filter response on the 

coupling parameters

❑ Once the parameters ki,j, fris,i and QE,q are defined, also 
the filter response is uniquely determined.

❑ This means that there are infinite networks, differing 
for the circuit component values but with same 
coupling parameters, which present the same response 
(identical scattering parameters)

❑ The circuit component values have however an 
influence on the voltages and currents along the filter; 
moreover, there could be some combinations of 
components values which result in an easier 
implementation while other values may even not allow 
the physical realization of the filter 



Synthesis of canonical prototypes: 

the circuit approach

❑ Starting point: evaluation of Chain Matrix from 

characteristic polynomials:
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Synthesis by extraction

❑ The synthesis is performed by subsequent extractions 

from the [ABCD] matrix of the prototype:

❑ Suitable rules are available for the synthesis of specific 

canonical prototypes (see the works of Cameron on the 

folded prototype)

[ABCD] matrix

Remainder network

[ABCD]’Extracted

element



Example of synthesis (folded prototype)
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Scaling of resonator nodes

❑ The circuit synthesis does not produce in general a 

normalized prototype (i.e. the capacitances are not all 

equal to 1)

❑ Using the conservation of the coupling coefficient ki,j, it 

is easy to evaluate the elements of the coupling matrix 

Mi,j resulting from synthesized components Ji,j, ci, cj:

❑ The elements Mi,i resulting from the synthesized 

frequency-invariant bi are given by:
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i j

i j

i j
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Direct Synthesis of the Coupling Matrix

❑ This technique consists in the direct evaluation of the 

coupling matrix M without resort to an explicit circuit  

synthesis

❑ The method has been proposed by Cameron and allows 

the evaluation of the transversal canonical prototype

❑ Details of the method, which rely on the relationship 

between the Coupling matrix and the short-circuited 

Admittance Matrix of the transversal prototype, can be 

found in the literature

❑ The computation procedure, can be easily automated in 

a computer program (input data: the characteristic 

polynomials)



Coupling Matrix reconfiguration

❑ Once a canonical prototype is available, it is possible to 

derive other topologies by performing suitable 

transformations of the synthesized coupling matrix 

❑ The transformation must conserve the response of the 

network

❑ A class of topological transformations with such a 

property is represented by the Similarity Transform

(Given’s Rotation)

❑ Starting from the Transversal Prototype, specific 

transformations are available for obtaining the other 

canonical prototypes (folded, wheel)



SynFil: A software for filters synthesis

❑ SynFil is a software for the synthesis of microwave filters 

with cross-coupled and extracted-pole topologies. It can 

be used freely during this Course (until the end of 2021).

❑ It can be downloaded from this link:

http://macchiarella.faculty.polimi.it/Dottorato2015/SynFil.zip

❑ A password is required to unpack the downloaded file. 

Matlab 2020 should be installed in the PC. Otherwise, 

version 9.8  (R2020a) of Matlab Runtime is required. 

❑ This Runtime can be downloaded from:

https://www.mathworks.com/products/compiler/mcr/index.html 





De-normalized coupling matrix M’

❑ The element of matrix M’ are defined as:

❑ The off main diagonal elements M’i,j represent the 

coupling coefficient ki,j (i>0, j<N+1)

❑ The diagonal elements M’q,q determine the resonance 

frequencies of q-th node:

❑ The elements M’0,j (M’i,N+1) are the inverse of the 

external Q of resonators j (i):
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Evaluation of the de-normalized response from M’

including losses

❑ The Y matrix vs. frequency (for G0=1) can be written as:

( ) 0 0

0 0
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f ff
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where Q0 is the unloaded Q of the resonators. 

The approximated expression assumes that the frequency 

invariant elements are represented by de-tuned resonators 

(from f0 to fris,i, see next slide); M’’ is then obtained from 

M’ by putting the element of the main diagonal to zero.


