RF SYSTEMS -

Written Test of July 2, 2020

Exercise 1

It is given the following antenna directivity function:

$$
f(\theta, \varphi)=\left[\frac{\sin (50 \cdot \theta)}{(50 \cdot \theta)}\right]^{2} \text { for } 0<\theta<\pi / 2, \quad f(\theta, \varphi)=0 \text { for } \pi / 2<\theta<\pi
$$

The operating frequency is 10 GHz .

1) What is the direction $\theta_{\text {MAX }}$ for which $f=f_{\max }=1$? Evaluate the 3 dB beamwidth $\left(\theta_{3 \mathrm{~dB}}\right)$ around this direction (Hint: $(\sin (x) / x)^{\wedge} 2=0.5$ for $\left.x=1.3916\right)$
2) Assuming that the emitted power is uniformly distributed on the spherical cap closing the cone of aperture $2 \theta_{B}$ equal to $\theta_{3 d B}$, evaluate the directivity gain $D_{M A X}$.
3) It is known that $\frac{1}{r^{2}} \iint_{\Sigma} f(\theta, \varphi) \cdot d \Sigma=0.00505929$ where Σ is the surface of the sphere of radius r centered on the antenna. Evaluate the exact value of $D_{M A X}$.
4) Assuming the antenna efficiency $\eta=0.85$, evaluate its effective area.

Exercise 2

The RF front-end of a receiving station operating a 10 GH is shown in the following figure. Note that the LNA output is connected to the filter through a cable with length L and attenuation per unit length α.

The communication system operates at $\mathrm{DR}=100 \mathrm{Mbit} / \mathrm{sec}$ and the bandwidth is $\mathrm{B}=20 \mathrm{MHz}$.

1. Evaluate the system noise temperature ($\mathrm{T}_{\text {sys }}$) of the receiver ($\mathrm{K}=1.38 \cdot 10^{-23}, \mathrm{~T}_{0}=293{ }^{\circ} \mathrm{K}$)
2. The power density of the incident wave on the antenna is $\mathrm{S}_{\mathrm{R}}=4 \cdot 10^{-9} \mathrm{~W} / \mathrm{m}^{2}$. Assuming the antenna gain $\mathrm{G}=15 \mathrm{~dB}$, compute the SNR of the receiver (assume the antenna output terminals matched). Hint: SNR=(Received Signal Power)/(Noise power)
3. Evaluate $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$ of the digital receiver to allow the required data rate (DR)

Exercise 3

The following scheme shows an amplifier operating at $2 \mathrm{GHz}\left(\mathrm{Z}_{0}=50 \mathrm{Ohm}\right)$

The transistor is characterized by the following parameters $\left(\mathrm{Z}_{0}=50 \Omega\right)$:
$\mathrm{S}_{11}=0.814 \angle-144.78^{\circ}, \mathrm{S}_{12}=0.075 \angle-15.38^{\circ} \quad \mathrm{S}_{21}=2.612 \angle 45.62^{\circ} \quad \mathrm{S}_{22}=0.55 \angle-108.91^{\circ}$
$\mathrm{NF}_{\text {min }}=1 \mathrm{~dB}, \Gamma_{\text {min }}=0.8 \angle 122, \mathrm{r}_{\mathrm{n}}=0.26$
The requested Transducer Gain is $\mathrm{G}_{\mathrm{T}}=15 \mathrm{~dB}$. Moreover, the amplifier output must be matched $\left(\Gamma_{\text {out }}=0\right)$.

1) Choose Γ s to get the smallest possible value of the Noise Figure NF with the assigned available power pain $\mathrm{Gp}=15 \mathrm{~dB}$. Specify the value of NF
2) Compute Γ_{L} to get the requirement on G_{T} satisfied.

The input and output networks are constituted by two transmission lines, the first with assigned characteristic impedance $\mathrm{Zc}=\mathrm{Z}_{0}=50 \mathrm{Ohm}$ and the second with assigned electrical length $\left(=90^{\circ}\right)$.
3) Evaluate Φ_{S} and Φ_{L} to get $Z_{S 1}$ and $Z_{L 1}$ real and lower than 1
4) Evaluate $Z_{C S}$ and $Z_{C L}$ to obtain the computed values of $Z_{S 1}$ and $Z_{L 1}$.

Solutions

Exercise 1

1. Direction for maximum $f(\theta): f\left(\theta_{\mathrm{MAX}}\right)=1$ for $\theta_{\mathrm{MAX}}=0$. $f\left(\theta_{3 d B}\right)=0.5 \rightarrow 50 \cdot \theta_{3 d B}=1.3916 \longrightarrow \theta_{3 d B}=0.0278 \mathrm{rad}$ $\Delta_{3 d B}=2 \theta_{3 d B}=0.0557 \mathrm{rad}\left(3.1893^{\circ}\right)$
2. Evaluation of $\mathrm{D}_{\mathrm{MAX}}$ (approximated formula):
$\cos \left(\theta_{3 d B}\right)=\left(1-2 / \mathrm{D}_{\mathrm{MAX}}\right) \rightarrow \mathrm{D}_{\mathrm{MAX}}=2 /\left(1-\cos \left(\theta_{3 d B}\right)\right)=5164.2(37.13 \mathrm{~dB})$
3. Exact value of $\mathrm{Dmax}_{\text {: }}$
$D_{M A X}=\frac{4 \pi}{\frac{1}{r^{2}} \iint_{\Sigma} f(\theta, \varphi) \cdot d \Sigma}=\frac{4 \pi}{0.00505929}=2483.8(33.95 \mathrm{~dB})$
4. Evaluation of the effective area:
$\mathrm{G}=\eta \mathrm{D}_{\mathrm{MAX}}=2111.2(33.245 \mathrm{~dB})$
$\mathrm{Ae}=\mathrm{G} \cdot \lambda^{2} /(4 \pi)=\mathrm{G} 0.03^{2} /(4 \pi)=0.15 \mathrm{~m}^{2}$.

Exercise 2

1. Evaluation of the system noise temperature:
$T_{s y s}=T_{a}+T_{L N A}+\frac{T_{f}}{G_{T}}+\frac{T_{e q} A_{f}}{G_{T}}$
with:
$A_{f, d B}=A_{0}+\alpha L=1+0.25 \cdot 15=4.75 \mathrm{~dB}, A_{\digamma}=10^{0.475}=2.9854, \mathrm{G}_{\mathrm{T}}=10^{\wedge} 1.2=15.8489$
$T_{f}=T_{0}\left(A_{f}-1\right)=293 \cdot 1.9854=581.7171{ }^{\circ} \mathrm{K}$
$T_{L N A}=T_{0}\left(10^{(N F / 10)}-1\right)=120.8735{ }^{\circ} \mathrm{K}$
Replacing:
$T_{\text {sys }}=343.5051{ }^{\circ} \mathrm{K}$
2. Evaluation of SNR:
$S N R=\operatorname{Pr} /\left(K T_{s y s} B\right)$
The received power Pr is evaluated from the power density of the incident wave: $P_{r}=A_{e} S_{R}, A_{e}=G \lambda^{2} /(4 \pi), \lambda=300 / f_{0}=0.03 \mathrm{~m} \rightarrow A_{e}=0.0023 \mathrm{~m}^{2}, P_{r}=9.0593 \cdot 10^{-12} \mathrm{~W}$ $K T_{s y s} B=9.4807 \cdot 10^{-14} \mathrm{~W}$
SNR=95.5548 (19.8 dB)
3. Evaluation of $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$:

We know that $\mathrm{SNR}=\left(\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}\right)(\mathrm{R} / \mathrm{B}) \rightarrow\left(\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}\right)=\mathrm{SNR} /(\mathrm{R} / \mathrm{B})=19.111(12.813 \mathrm{~dB})$

Exercise 3

1. Draw the circle $\mathrm{Gp}=15 \mathrm{~dB}$. Draw circles at $\mathrm{NF}=$ const $>1 \mathrm{~dB}$ until you find the one tangent in a point to the previous $\mathrm{Gp}=$ const circle. This circle is $\mathrm{NF}=1.47 \mathrm{~dB}$. The tangent point is $\Gamma_{\mathrm{S}}=0.758 \angle 137.64^{\circ}$. 2. Select S Param \rightarrow Optimum Gamma \rightarrow Load. You get $\Gamma_{\mathrm{L}}=0.642 \angle 144.65^{\circ}$.

2. To get Φ_{S} you draw the circle $\Gamma=\left|\Gamma_{\mathrm{S}}\right|$, store Γ_{S} and move from Γ_{S} toward the load until intersect the horizontal axis. The length is the phase of DeltaGamma divided by 2: $\Phi_{\mathrm{S}}=42.485 / 2=21.24^{\circ}$. The intersection point is $r_{\mathrm{s} 1}=0.138$. We then get the impedance $\mathrm{Z}_{\mathrm{S} 1}=\mathrm{r}_{\mathrm{s} 1} * 50=6.9 \Omega$.
The same must be repeated for Φ_{L}, using Γ_{L} as starting point. You get: $\Phi_{\mathrm{S}}=35.5 / 2=17.75^{\circ}$, $Z_{\mathrm{L} 1}=50 * 0.218=10.9 \Omega$.
3. The lines 90° long act as impedance inverters, i.e. $\mathrm{Z}_{\mathrm{in}}=\mathrm{Zc}^{\wedge} 2 / \mathrm{Z}_{\mathrm{L}}$. Then $\mathrm{Zc}=\operatorname{sqrt}\left(\mathrm{Z}_{\mathrm{in}} * \mathrm{Z}_{\mathrm{L}}\right)$. Appling this formula with Zin given by $\mathrm{Z}_{\mathrm{s} 1}$ and $\mathrm{Z}_{\mathrm{L} 1}$ and $\mathrm{Z}_{\mathrm{L}}=50 \Omega$, we get: $\mathrm{Z}_{\mathrm{CS}}=18.57 \Omega, \mathrm{Z}_{\mathrm{CL}}=23.3452 \Omega$.
