### RF SYSTEMS – Written Test of July 2, 2020

Exercise 1

It is given the following antenna directivity function:

$$f(\theta, \varphi) = \left[\frac{\sin(50 \cdot \theta)}{(50 \cdot \theta)}\right]^2 \text{ for } 0 < \theta < \pi/2, \quad f(\theta, \varphi) = 0 \text{ for } \pi/2 < \theta < \pi$$

The operating frequency is 10 GHz.

- 1) What is the direction  $\theta_{MAX}$  for which  $f=f_{max}=1$ ? Evaluate the 3dB beamwidth ( $\theta_{3dB}$ ) around this direction (Hint:  $(\sin(x)/x)^2=0.5$  for x=1.3916)
- 2) Assuming that the emitted power is uniformly distributed on the spherical cap closing the cone of aperture  $2\theta_B$  equal to  $\theta_{3dB}$ , evaluate the directivity gain  $D_{MAX}$ .
- 3) It is known that  $\frac{1}{r^2} \iint_{\Sigma} f(\theta, \varphi) \cdot d\Sigma = 0.00505929$  where  $\Sigma$  is the surface of the sphere of radius r

centered on the antenna. Evaluate the exact value of  $D_{MAX}$ .

4) Assuming the antenna efficiency  $\eta$ =0.85, evaluate its effective area.

## Exercise 2

The RF front-end of a receiving station operating a 10 GH is shown in the following figure. Note that the LNA output is connected to the filter through a cable with length L and attenuation per unit length  $\alpha$ .



The communication system operates at DR=100 Mbit/sec and the bandwidth is B=20 MHz.

- 1. Evaluate the system noise temperature ( $T_{sys}$ ) of the receiver (K=1.38  $\cdot 10^{-23}$ ,  $T_0=293 \circ K$ )
- 2. The power density of the incident wave on the antenna is  $S_R=4\cdot10^{-9}$  W/m<sup>2</sup>. Assuming the antenna gain G=15 dB, compute the SNR of the receiver (assume the antenna output terminals matched). Hint: SNR=(Received Signal Power)/(Noise power)
- 3. Evaluate  $E_b/N_0$  of the digital receiver to allow the required data rate (DR)

Exercise 3

The following scheme shows an amplifier operating at 2 GHz ( $Z_0=50$  Ohm)



The transistor is characterized by the following parameters ( $Z_0=50 \ \Omega$ ): S<sub>11</sub>=0.814 $\angle$  -144.78°, S<sub>12</sub>=0.075 $\angle$ -15.38° S<sub>21</sub>=2.612 $\angle$  45.62° S<sub>22</sub>=0.55 $\angle$  -108.91° NF<sub>min</sub>=1 dB,  $\Gamma_{min}=0.8 \angle 122$ , r<sub>n</sub>=0.26

The requested Transducer Gain is  $G_T=15$  dB. Moreover, the amplifier output must be matched ( $\Gamma_{out}=0$ ).

- Choose Γs to get the smallest possible value of the Noise Figure NF with the assigned available power pain Gp=15 dB. Specify the value of NF
- 2) Compute  $\Gamma_L$  to get the requirement on  $G_T$  satisfied.

The input and output networks are constituted by two transmission lines, the first with assigned characteristic impedance  $Zc=Z_0=50$  Ohm and the second with assigned electrical length (=90°).

- 3) Evaluate  $\Phi_S$  and  $\Phi_L$  to get  $Z_{S1}$  and  $Z_{L1}$  real and lower than 1
- 4) Evaluate  $Z_{CS}$  and  $Z_{CL}$  to obtain the computed values of  $Z_{S1}$  and  $Z_{L1}$ .

# **Solutions**

### Exercise 1

1. Direction for maximum  $f(\theta)$ :  $f(\theta_{MAX})=1$  for  $\theta_{MAX}=0$ .  $f(\theta_{3dB})=0.5 --> 50 \cdot \theta_{3dB}=1.3916 --> \theta_{3dB}=0.0278$  rad  $\Delta_{3dB} = 2\theta_{3dB} = 0.0557 \text{rad} (3.1893^{\circ})$ 

2. Evaluation of D<sub>MAX</sub> (approximated formula):  $\cos(\theta_{3dB}) = (1-2/D_{MAX}) \rightarrow D_{MAX} = 2/(1-\cos(\theta_{3dB})) = 5164.2 (37.13 \text{ dB})$ 

3. Exact value of D<sub>MAX</sub>:

 $D_{MAX} = \frac{4\pi}{\frac{1}{r^2} \iint_{\Sigma} f(\theta, \varphi) \cdot d\Sigma} = \frac{4\pi}{0.00505929} = 2483.8 \text{ (33.95 dB)}$ 

4. Evaluation of the effective area: G=nD<sub>MAX</sub>=2111.2 (33.245 dB) Ae= $G^{\lambda^2}/(4\pi)$ =  $G^{0.03^2}/(4\pi)$ =0.15 m<sup>2</sup>.

#### Exercise 2

1. Evaluation of the system noise temperature:

$$T_{sys} = T_a + T_{LNA} + \frac{T_f}{G_T} + \frac{T_{eq}A_f}{G_T}$$

with:

 $A_{f,dB} = A_0 + \alpha L = 1 + 0.25 \cdot 15 = 4.75 \text{ dB}, A_f = 10^{0.475} = 2.9854, G_T = 10^{1.2} = 15.8489$  $T_f = T_0(A_f - 1) = 293 \cdot 1.9854 = 581.7171 \text{ °K}$  $T_{LNA} = T_0(10^{(NF/10)} - 1) = 120.8735 \text{ °K}$ Replacing:  $T_{sys} = 343.5051 \text{ °K}$ 

2. Evaluation of SNR:  $SNR = Pr/(KT_{svs}B)$ The received power Pr is evaluated from the power density of the incident wave:  $P_r = A_e S_R, A_e = G \lambda^2 / (4\pi), \lambda = 300 / f_0 = 0.03 \text{m} \Rightarrow A_e = 0.0023 \text{ m}^2, P_r = 9.0593 \cdot 10^{-12} \text{ W}$  $KT_{svs}B = 9.4807 \cdot 10^{-14} \text{ W}$ SNR=95.5548 (19.8 dB)

3. Evaluation of  $E_b/N_0$ : We know that SNR= $(E_b/N_0)(R/B) \rightarrow (E_b/N_0)=SNR/(R/B)=19.111$  (12.813 dB) Exercise 3

1. Draw the circle Gp=15 dB. Draw circles at NF=const > 1dB until you find the one tangent in a point to the previous Gp=const circle. This circle is NF=1.47 dB. The tangent point is  $\Gamma_S=0.758 \angle 137.64^{\circ}$ . 2. Select S Param  $\rightarrow$  Optimum Gamma  $\rightarrow$  Load. You get  $\Gamma_L=0.642 \angle 144.65^{\circ}$ .



3. To get  $\Phi_S$  you draw the circle  $\Gamma = |\Gamma_S|$ , store  $\Gamma_S$  and move from  $\Gamma_S$  toward the load until intersect the horizontal axis. The length is the phase of DeltaGamma divided by 2:  $\Phi_S = 42.485/2=21.24^\circ$ . The intersection point is  $r_{s1}=0.138$ . We then get the impedance  $Z_{S1}=r_{s1}*50=6.9 \Omega$ . The same must be repeated for  $\Phi_L$ , using  $\Gamma_L$  as starting point. You get:  $\Phi_S = 35.5/2=17.75^\circ$ ,  $Z_{L1}=50*0.218=10.9 \Omega$ .

4. The lines 90° long act as impedance inverters, i.e.  $Z_{in}=Zc^2/Z_L$ . Then  $Zc=sqrt(Z_{in}*Z_L)$ . Appling this formula with Zin given by  $Z_{s1}$  and  $Z_{L1}$  and  $Z_L=50 \Omega$ , we get:  $Z_{CS}=18.57 \Omega$ ,  $Z_{CL}=23.3452 \Omega$ .