RF SYSTEMS
 9 July 2019

Surname \& Name

Identification Number

Signature

Exercise 1 (11)

Consider the bi-directional satellite link in the figure (fu: Earth-to-Satellite, f_{D} : Satellite-to-Earth). The satellite parameters are given (Transmitter power P_{T}, Antenna Gain Gs, Equivalent Noise Temperature of the receiving system T_{S}). The Earth station has only the antenna gain G_{E} assigned. The required data rate R must be $100 \mathrm{Mb} / \mathrm{sec}$ with $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=15 \mathrm{~dB}$ and $\mathrm{B}=36 \mathrm{MHz}$ for both up and down link.

1) Evaluate the SNR that must be guaranteed by the receivers of satellite and Earth Station
2) Compute the required transmitted power from the earth station
3) Compute the required Equivalent Noise Temperature of the earth receiver

The scheme in the figure represents the receiver on board of the satellite (previous exercise).
The digital receiver guarantees $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=15 \mathrm{~dB}$ with the input power $\mathrm{P}_{\mathrm{d}} \geq-60 \mathrm{dBm}$.

1) Evaluate the gain of the IF amplifier in order to satisfy the constraint on P_{d}
2) Evaluate the two possible frequencies of the local oscillator. For each LO frequency specify the corresponding image frequency.
3) Draw the equivalent noise temperature scheme of the receiver (including the contribution from the antenna $\mathrm{Ta}=300^{\circ} \mathrm{K}$)
4) Write the expression of the noise temperature at the receiver input (T_{s})
5) Compute the Noise figure $\mathrm{NF}_{\text {LNA }}$ of the low noise amplifier in order T_{S} is equal to the value specified in the previous exercise $\left(1500^{\circ} \mathrm{K}\right)$
6) Can LNA be removed from the receiver by suitably decreasing $\mathrm{T}_{\mathrm{SSB}}$? Justify the answer quantitatively!

Exercise 3 (11)

The following scheme represents a power amplifier (PA) operating at 2 GHz . The matching networks are required to present at input and output of the amplifier the optimum loads Z_{S} and Z_{L}, which determine the conjugate matching condition. The amplifier is then unconditionally stable, and the transducer gain G_{T} is equal to $6 \mathrm{~dB} . \mathrm{P}_{1 \mathrm{~dB}}$ of the transistor is 50 W .

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{S}}=\left(\mathrm{Z}_{\text {in }}\right)^{*}=(20-\mathrm{j} 35) \Omega \\
& \mathrm{Z}_{\mathrm{L}}=\left(\mathrm{Z}_{\text {out }}\right)^{*}=(2+\mathrm{j} 4) \Omega \\
& \mathrm{Z}_{0}=50 \Omega \\
& \mathrm{Z}_{\mathrm{c} 1}=20 \Omega \\
& \mathrm{Z}_{\mathrm{c} 2}=? \\
& \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}=?
\end{aligned}
$$

1) Design the two networks (i.e. compute $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{Z}_{\mathrm{c} 2}$). Hints: The networks can be assumed as matching networks that transform $\mathrm{Z}_{\text {in }}$ and $\mathrm{Z}_{\text {out }}$ into 50 Ohm respectively. Note that Z_{S} and Z_{L} are actual values (NOT normalized).
2) Assume a 2-tone as input signal. Compute the amplifier back off required for the carrier-tointermodulation at output (CI) equal to 30 dB (assume $\Delta_{\mathrm{P}}=9 \mathrm{~dB}$).
3) Compute the PEP and average power at amplifier output
4) The PA is operating in class AB . With the 2-tone signal at input the DC current absorbed from the bias source is 2.5 A (with Vcc=16 V). Evaluate the Power Added Efficiency (PAE) of the amplifier

Exercise 1

The SNR is given by:
$S N R=\frac{E_{b}}{N_{0}} \frac{R}{B}=87(19.3952 \mathrm{~dB})$
The noise power at the satellite receiver is given by:
$N_{S}=K T_{S} B=7.45 \cdot 10^{-13} \mathrm{~W}$
Then the received power P_{S} must be: $\mathrm{P}_{\mathrm{S}}=\mathrm{N}_{\mathrm{S}} \mathrm{SNR}=6.55 \cdot 10^{-11} \mathrm{~W}$.
Using the Friis equation we obtain the transmitted power from the Earth Station:
$P_{T E}=\frac{P_{S}}{G_{S} G_{E}}\left(\frac{4 \pi L}{\lambda_{U}}\right)^{2}=1704.2 \mathrm{~W}$
where λ_{U} is given by $\mathrm{c} / \mathrm{f}_{\mathrm{U}}=0.028 \mathrm{~m}$.
The Friis equation for the down link determines the Teq of the Earth receiver:
$N_{E}=\frac{P_{E}}{S N R}=\frac{P_{T S} G_{S} G_{E}}{S N R}\left(\frac{\lambda_{D}}{4 \pi L}\right)^{2}=6.2079 \cdot 10^{-15} \mathrm{~W}$
$T_{E}=\frac{N_{E}}{K B}=12.4957^{\circ} \mathrm{K}$

Exercise 2

The received power in dBm at the satellite receiver is $\mathrm{P}_{\mathrm{RS}}=-71.84 \mathrm{dBm}$ (from the previous exercise).
The gain GIF is obtained by imposing $\mathrm{Pd}=-60 \mathrm{dBm}$:
$P_{d}=P_{R S}-A_{0}+G_{L N A}-A_{c}+G_{I F}=-60 \mathrm{dBm} \rightarrow G_{I F}=8.84 \mathrm{~dB}$
The possible local oscillator frequencies are given by
$\mathrm{f}_{\mathrm{LO}}=\mathrm{f}_{\mathrm{up}} \pm 1 \mathrm{GHz}=(9.7 \mathrm{GHz}, 11.7 \mathrm{GHz})$
The image frequencies are then:
$\mathrm{f}_{\mathrm{IM} 1}=\mathrm{f}_{\mathrm{LOO}}-1 \mathrm{GHz}=8.7 \mathrm{GHz}, \mathrm{f}_{\mathrm{IM} 2}=\mathrm{f}_{\mathrm{LO} 2}+1 \mathrm{GHz}=12.7 \mathrm{GHz}$,
Equivalent scheme (the factor 2 in front of TLNA takes into account the image noise at the amplifier output):

The expression of $\mathrm{T}_{\text {sys }}$ results:

$$
T_{s y s}=T_{a}+T_{f}+2 T_{L N A} A_{0}+\frac{A_{0}}{G_{L N A}}\left(T_{S S B}+T_{I F} A_{c}\right)+\frac{T_{e q} A_{0} A_{c}}{G_{L N A} G_{I F}}
$$

Equating the above expression to the previously computed values we get the following expression for T T LNA :

$$
T_{L N A}=\frac{1}{2 A_{0}} \frac{A_{0}\left(T_{S S B}+T_{I F} A_{c}\right)}{T_{s y s}-\left(T_{a}+T_{f}+\frac{T_{S S B} A_{0}}{G_{L N A}}+\frac{T_{e q} A_{0} A_{c}}{G_{L N A} G_{I F}}\right)}=343{ }^{\circ} \mathrm{K}
$$

$$
N F=10 \cdot \log 10\left(1+\frac{T_{L N A}}{293}\right)=3.3659 \mathrm{~dB}
$$

Removing the amplifier the expression for $\mathrm{T}_{\text {sys }}$ becomes:
$T_{\text {sys }}=T_{a}+T_{f}+A_{0}\left(T_{S S B}^{\prime}+T_{I F} A_{c}\right)+\frac{T_{e q} A_{0} A_{c}}{G_{I F}}=2477.4+A_{0} T_{S S B}^{\prime}=1500$
Obviously, this equation has no positive solution for T'sSB, so the LNA cannot be removed.

Exercise 3

The first network is a double stub with load given by $\mathrm{Zin}=20+\mathrm{j} 35$. Using the Smith Chart we get for C_{1} and C_{2} :
$\mathrm{B}_{1}=0.786 \cdot 0.02=0.0157 \rightarrow \mathrm{C}_{1}=\mathrm{B}_{1} /\left(2 \pi \mathrm{f}_{0}\right)=1.25 \mathrm{pF}$
$\mathrm{B}_{2}=1.568 \cdot 0.02=0.0314 \rightarrow \mathrm{C}_{2}=\mathrm{B}_{2} /\left(2 \pi \mathrm{f}_{0}\right)=2.495 \mathrm{pF}$
For the second network, let consider the impedance Z_{3} at the input of line 1 (loaded by Zout=(2j4) Ohm:

The susceptance B3 must cancel the imaginary part of Y_{3} so that the impedance Z_{2} is real $\left(\mathrm{R}_{2}\right)$:
$Z_{2}=Y_{3}+j B_{3}=\frac{1}{R_{2}} \Rightarrow B_{3}=j 0.01, R_{2}=\frac{1}{5 \cdot 10^{-3}}=200 \Omega$
The capacitance C_{3} is then given by: $C_{3}=B_{3} /\left(2 \pi f_{0}\right)=0.796 \mathrm{pF}$.
The resistance R 2 is transformed into 50 Ohm by selecting $\mathrm{Z}_{\mathrm{c} 2}$ as follows:
$50=Z_{c 2}^{2} / 200 \Rightarrow Z_{c 2}=100 \mathrm{Ohm}$
$B O=\frac{C I}{2}-\Delta_{p}-3=3 \mathrm{~dB}$
$\mathrm{P}_{m}=P_{1 d B}-B O=25 \mathrm{~W}, P E P=P_{m}+3=50 \mathrm{~W}$
$P_{i n}=P_{m}-G_{T}=6.25 \mathrm{~W}, P_{D C}=16 \cdot 2.5=40 \mathrm{~W}$
$P A E=\frac{P_{m}-P_{\text {in }}}{P_{D C}}=0.4688$

