RF SYSTEMS Written Test of June 12, 2020

Exercise 1

The communication system in the above figure is composed by the transmitter T ($P_T=1$ W, $f_0=60$ GHz) and the receiver R located at distance D and altitude H from T. The antennas of T and R are directed horizontally and the line connecting the antennas forms the angle θ with respect the horizontal line. The antennas are equal and their directivity function is shown in the above figure (assume $f(\phi)=\cos t$ for $0 < \phi < 2\pi$)

- 1) Compute the parameter a_0 of the directivity diagram to have the gain G of the antennas equal to 10 dB. Assume the radiation impedance $Z_R=50 \Omega$ e the loss resistance $R_p=5\Omega$.
- 2) Evaluate the received power in R for D=1Km and H=150m.

Exercise 2

Consider the link in the previous exercise operating at 60 GHz and the received power P_r =-78 dBm. The architecture of the receiving station is shown in the following figure:

- 1) Assuming the local oscillator frequency (f_{LO}) smaller than the frequency of the received signal, determine f_{LO}) and the image frequency of the receiver.
- 2) It is know that the digital receiver must operate with $(E_b/N_0)=10$ dB in order to get the data rate R=200 Mbit/sec. Compute the SNR_{sys} of the system for a signal bandwidth B=100 MHz.
- 3) Evaluate the equivalent noise temperature of the system (T_{sys}) imposing SNR_{sys} and P_r (received power). Hint: Boltzmann Constant K=1.38·10⁻²³.
- 4) Draw the equivalent scheme of the receiver with the noise temperature sources. Write the expression of T_{sys} as function of the blocks parameters. Imposing the required T_{sys} evaluate the gain G_{LNA} (assume the equivalent noise temperature of the receiving antenna equal to 150 °K)

Exercise 3

The following scheme refers to an oscillator working at 1 GHz. The S parameters of the transistor are also reported on the figure. The input line ($Z_c=50 \Omega$, electrical length ϕ_1) is short-circuited.

- 1) Evaluate Γ_L and Γ_S so that the starting of the oscillation is guaranteed (Hint: impose $|\Gamma_{out}|=1.4$ and chose for Γ_S the closest point to the short circuit)
- 2) Evaluate the length ϕ_1 determining the required Γ_s .
- 3) Design the output network, i.e. compute ϕ_2 and the inductance L.

SOLUTION

/

Exercise 1

1) The gain is expressed as follows ($\eta = 50/55 = 0.9091$):

$$G = \frac{4\pi\eta}{\int\limits_{-\pi}^{\pi}\int\limits_{0}^{\pi} f(\theta)\sin(\theta)d\varphi d\theta} = \frac{4\pi \cdot 0.9091}{2\pi \left[\left(1 - \cos(\theta_0) \right) + a_0 \cos(\theta_0) \right]} = 10$$
$$a_0 = 0.1716$$

2) From the Friis equation:

$$P_r = P_t + G_T + G_R - L_f + f_{dB} = 50 - 20 \log \left(\frac{4\pi D}{\lambda_0}\right) + f_{dB}$$

Being $\theta = \sin^{-1}(H/D) = 0.1507 < \pi/20 \Rightarrow f_{dB} = 0$. Then: $P_r = 50 - 128 = -78$ dBm.

Exercise 2

- 1) $f_{LO}=f_{RF}-f_{IF}=58$ GHz, $f_{IM}=f_{LO}-f_{IF}=56$ GHz.
- 2) The SNRsys is related to Eb/No as follows:

$$SNR_{sys} = \frac{E_b}{N_0} \frac{R}{B} = 10 + 10 \log\left(\frac{200}{100}\right) = 13 \text{ dB}$$

3) It has:

$$SNR_{sys} = \frac{P_r}{KT_{sys}B} = 13 \text{ dB} \Longrightarrow \text{T}_{sys} = 575.6 \text{ }^{\circ}\text{K}$$

4) Equivalent scheme (the factor 2 in front of T_{LNA} is due to the contribution from the image band):

The expression of Tsys results:

$$T_{sys} = T_a + T_f + 2T_{LNA}A_0 + \frac{A_0}{G_{LNA}} \left(T_{SSB} + T_{eq}A_c\right) = 575.6$$

We get the following expression for G_{LNA}:

$$G_{LNA} = \frac{A_0 \left(T_{SSB} + T_{eq} A_c \right)}{T_{sys} - \left(T_a + T_f + 2T_{LNA} A_0 \right)} = 35.3$$
(15.5 dB)

Exercise 3

- Draw the mapping circle of Γ_s ($|\Gamma_{out}|=1.4$). Choose the intersection with the outer circle closest to the c.c: $\Gamma_s = 1 \angle 173^\circ$.
- Evaluate $Z_{out} = -1.988 j2.7$. Assign $Z_L = 1.988/3 + j2.7 = 0.663 + j2.7$
- Evaluate $\phi_s = (180 \angle \Gamma_s)/2 = 3.5^{\circ}$
- Design the output network (single stub):
 Draw the circle |Γ|=const passing for Γ_L. Store Γ_L. Draw the circle g=1. Select the intersection where b<0.
- Read the phase variation of Γ ($\Delta \Phi$ =110.18°). Then ϕ_2 = $\Delta \Phi/2$ =55.08.
- Read the susceptance of the current point: b=-3.316. X=-50/b=15.08= ω L \rightarrow L=2.4 nH.