RF SYSTEMS Written Test of September 13, 2019

Exercise 1

The figure shows a terrestrial link operating at 12 GHz with bandwidth B=100 MHz. The two stations are located at the maximum distance allowed by their elevation (1000m and 15m respectively). The antennas are identical and exhibit the efficiency η =0.85 and the equivalent beamwidth $\Delta \theta$ =10°.

- 1) Evaluate L_{max}
- 2) Evaluate the gain G of the antennas

The following figure shows the scheme of the receiving station R with the relevant parameters.

- 3) Evaluate the received power P_r assuming the transmitted power $P_t=10W$
- 4) Imposing SNR=30 dB at the receiving antenna, compute the required equivalent temperature T_{eq} of the receiver (at the input, including the antenna)
- 5) Evaluate NF_{LNA} in order to get the requested T_{eq}
- 6) If the LNA and the second filter were removed, what would be the new value of T_{SSB} keep T_{eq} unchanged?
- 7) Determine the minimum value of P_{1dB} of the transmitter in order to obtain the mean power of intermodulation at the receiver input equal to the system noise power (use a 2-tone signal with 10 W mean power).

Exercise 2

The following figure represents the scheme of a microwave oscillator that is required to oscillate at 2.5 GHz. The scattering parameters of the active device are reported on the figure

- 1) Evaluate the reflection coefficients Γ_1 and Γ_2 ensuring the start of oscillation and the best power transfer to the load (assign the magnitude of Γ_1 equal to 1). <u>Hint</u>: draw the mapping circle of the source with $|\Gamma_{out}|=1.3$ for determining Γ_1 .
- 2) Assign the resonance frequency of the shunt resonator in the input network equal to the oscillation frequency and evaluate the electrical length ϕ_L so that Γ_1 has the value computed previously
- 3) Design the network OUT, using the scheme in the figure (evaluate the susceptances B_1 and B_2).
- 4) Verify if oscillation can occur at 2.51 GHz

Solution

Exercise 1

$$(L_{\max})_{Km} = L_1 + L_2 \simeq 3.57 \left(\sqrt{(H_1)_{meter}} + \sqrt{(H_2)_{meter}} \right) = 126.71 \text{ Km}$$

 $\Delta \theta = 2 \cos^{-1} \left(1 - \frac{2\eta}{G_R} \right) \implies G_R = \frac{2\eta}{1 - \cos(\Delta \theta/2)} = 446.74 \ (26.5 \text{ dB})$

Wavelength: $\lambda = 300/f_0 = 25$ mm Link equation (in dBW):

$$P_r = P_t + 20 \log \left(\frac{\lambda}{4\pi L_{\text{max}}}\right) + G_T + G_R = -63 \text{ dBm}$$

Evaluation of T_{eq}:

$$P_r - 10\log(KT_{eq}B) = 30 \Longrightarrow T_{eq} = 10^{(P_r - 10\log(KB) - 30)/10} = 356.55 \text{ }^{\circ}\text{K}$$

Evaluation of NF_{LNA}:

 $A_{fl}=1.023, A_{f2}=1.122, A_c=2.51, T_{f1}=T_0(10^{A_{f1}/10}-1)=6.825, T_{f2}=35.75$

$$T_{eq} = T_a + T_{f1} + A_{f1}T_{LNA} + \frac{A_{f1}\left[T_{SSB}A_{f2} + T_{f2}\right]}{G_{LNA}}$$
$$T_{LNA} = \frac{T_{eq} - T_a - T_{f1} - \frac{A_{f1}\left[T_{SSB}A_{f2} + T_{f2}\right]}{G_{LNA}}}{A_{f1}} = 157.94 \text{ °K}$$
$$NF = 10\log(10^{NF/293} - 1) = 1.87 \text{ dB}$$

Removing the second filter:

$$T_{eq} = T_a + T_{f1} + A_{f1}T_{SSB} \Longrightarrow T_{SSB} = \frac{T_{eq} - T_a - T_{f1}}{A_{f1}} = 195.33 \text{ °K}$$

Evaluation of P_{1dB} :

Note CI is unchanged at the receiver. So, with $P_{t,int}$ the transmitted intermodulation power, $P_{r,int}$ the received intermodulation power we have:

$$CI = P_t - P_{t,int} = P_r - P_{r,int} = P_r - KT_{eq}B = SNR = 30 \text{ dB}$$

From the expression of CI we derive IP₃ and P_{1dB}:

$$IP_3 = \frac{CI + 2P_t - 6}{2} = 52 \text{ dBm}, P_{1dB} = IP_3 - 10.63 = 41.37 \text{ dBm}$$

Exercise 2

The assigned transistor is potentially instable (k=0.61), so it can be used for realizing an oscillator. Using the electronic Smith Chart, the mapping circle with $|\Gamma_{out}|=1.3$ is drawn. One of the two intersection with the outer circle is then selected: $\Gamma_1=1\angle -39.5^\circ$.

Selecting "S Param." \rightarrow "Gamma OUT" the reflection coefficient at port 2 is obtained: $\Gamma_{out}=1.3 \angle 45.72^{\circ}$. The S. chart reports also the normalized impedance $Z_{out}=-0.793+j2.125$. Imposing the condition starting the oscillation, the values of Z_2 and Γ_2 are then obtained: $Z_2 = 0.2643-j2.125 \rightarrow \Gamma_2 = 0.91 \angle -49.85^{\circ}$.

At the oscillation frequency, the shunt resonator is an open circuit, so the length ϕ_L is given by: $\phi_L = -\angle(\Gamma_1)/2 = 19.75^\circ$.

The double-stub matching network is designed according the following procedure:

- 1) Read the normalized admittance at Γ_2 from the S. Chart: y₂=0.058+j0.463
- 2) Draw the circle with constant conductance $g=g_2=0.058$ rotated of 270° toward the load
- 3) Draw the circle g=1
- Select one of the two intersections between the above circles: Γ_A=0.922∠-157.29°. The value y_A must be in the form y_A=1+jb₂=1+j4.77. Then b₂=4.77.
- 5) Rotate Γ_A toward the source of -270°, arriving at $\Gamma_A=0.922\angle$ -67.29°. The normalized admittance results $y_B=0.058+j0.664$
- 6) Note that the real part of y_B coincides with g₂. The unknown b₁ is then obtained by subtracting the imaginary part of y_B from the imaginary part of y₂: b₁=0.664-0.463=0.201

At f=2.51 GHz the susceptance of the shunt resonator results $B = 2\pi f \cdot C_{eq} \left(\frac{f}{f_0} - \frac{f_0}{f}\right) = 0.05036 S$

(B/Y_c=0.2518). With the S.C. we can compute the value of Γ_1 , resulting 1 \angle -67.77°, which produces $|\Gamma_{out}| = 0.983$. The start of the oscillation in then impossible.