RF SYSTEMS

Written Test of June 20, 2019

Surname \& Name

Identification Number

Signature

Exercise 1 (8+2)

Consider the antenna used in a base station for LTE service, placed at $\mathrm{H}=30 \mathrm{~m}$ above ground. The operating (downlink) frequency is $f_{0}=2.12 \mathrm{GHz}$.

The directivity function is expresses as:

$$
\begin{aligned}
& f(\varphi, \theta)=f_{\varphi}(\varphi) \cdot f_{\theta}(\theta) \quad \varphi: \text { azimuth, } \theta: \text { elevation } \\
& f_{\varphi}(\varphi)=\cos (\varphi) \quad-\pi / 2 \leq \varphi \leq \pi / 2, \quad 0 \text { elsewhere } \\
& f_{\theta}(\theta)=\sin (5 \theta) \quad 2 \pi / 5 \leq \theta \leq 3 \pi / 5, \quad 0 \text { elsewhere }
\end{aligned}
$$

Note that angles θ and φ refer to the pointing direction $\left(\theta=90^{\circ}, \varphi=0^{\circ}\right)$. This direction is tilted by $\theta_{\text {tilt }}$ with respect to the direction parallel to ground in order to reduce the interference among adjacent cells.

1) Specify the angles $\theta_{\max }$ and $\varphi_{\max }$ where $f(\theta, \varphi)$ is maximum
2) Compute the antenna gain (efficiency factor $\eta=0.85$).

Hint: $\int \sin (x) \sin (5 x)=\frac{\sin (4 x)}{8}-\frac{\sin (6 x)}{12}$
3) x_{S} represents the distance from the base station at ground level determined by antenna tilting (see the figure). Imposing $x_{S}=1.5 \mathrm{Km}$, determine the value of $\theta_{\text {tilt }}$
4) The transmitter power level is 30 dBm . Evaluate the power density $\left(\mathrm{W} / \mathrm{m}^{2}\right)$ at x_{S} (with $\varphi=\varphi_{\max }$).
(Optional)
5) Evaluate the angles $\theta_{3 \mathrm{~dB}}$ and $\varphi_{3 \mathrm{~dB}}$ where f_{φ} and f_{θ} are reduced by -3 dB with respect to the optimum pointing (Hint: there are two values for each angle)
6) Evaluate also the power density at $x_{3 d B}$ (the point at ground level determined by $\theta_{3 \mathrm{~dB}}$). Assume $\varphi=\varphi_{3 \mathrm{~dB}}$

Exercise 2 (8)
The scheme in the figure represents the RF front-end of a phone receiver using the BS of the previous exercise.

$$
\begin{aligned}
& \mathrm{G}_{\mathrm{R}}=1 \mathrm{~dB} \\
& \mathrm{NF}=7 \\
& \mathrm{G}_{\mathrm{RF}}=10 \mathrm{~dB} \\
& \mathrm{~T}_{\mathrm{a}}=300^{\circ} \mathrm{K} \\
& \mathrm{~A}_{\mathrm{f}}=2 \mathrm{~dB} \\
& \mathrm{~L}_{\mathrm{c}}=6 \mathrm{~dB} \\
& \mathrm{~T}_{\mathrm{SSB}}=500^{\circ} \mathrm{K} \\
& \mathrm{~T}_{\mathrm{IF}}=500^{\circ} \mathrm{K}
\end{aligned}
$$

a) Draw the scheme of the receiver referred to the equivalent noise sources. Evaluate the equivalent noise temperature (T_{eq}) at the receiver input. Compute the noise power at the receiver input (assume $\mathrm{B}=20 \mathrm{MHz}$). Use $\mathrm{K}=1.38 \cdot 10^{-23}$ (Boltzmann Constant)
b) Write the expression of the received power (at the antenna output) as function of the distance R from the BS
c) It is requested the data rate $\mathrm{R}=300 \mathrm{Mbit} / \mathrm{sec}$, with $\left(\mathrm{E}_{b} / \mathrm{N}_{0}\right)=10 \mathrm{~dB}$. Evaluate the corresponding SNR of the receiver.
d) Evaluate the maximum distance R from the BS at which the data rate R is still guaranteed.

Exercise 3 (8)
The following scheme represents an amplifier operating at 12 GHz .
a) Determine the values Γ_{s} and Γ_{L} for the maximum transducer gain
b) Evaluate the unknown parameters $\left(Z_{c 1}, Z_{c 2}, \beta I_{1}\right)$ of the output matching network

Scattering parameters of the transistor:
$\mathrm{S}_{11}=0.66 \angle 146^{\circ} \quad \mathrm{S}_{21}=2.39 \angle 45^{\circ} \quad \mathrm{S}_{12}=0.088 \angle 69^{\circ} \quad \mathrm{S}_{22}=0.3 \angle-48^{\circ}$

Exercise 4 (9)

The following scheme refers to an oscillator working at 432 MHz . The S parameters of the transistor are also reported on the figure.

$$
\begin{aligned}
& \mathrm{S}_{11}=0.54 \angle-90^{\circ} \\
& \mathrm{S}_{12}=0.01 \angle 66^{\circ} \\
& \mathrm{S}_{21}=45.38 \angle 137^{\circ} \\
& \mathrm{S}_{22}=0.76 \angle-26^{\circ}
\end{aligned}
$$

1) Select a suitable value for L_{s} (use the mapping circles of Γ_{s} for obtaining $\left|\Gamma_{\text {out }}\right|=1.5$)
2) Evaluate the parameters of the output network $(\mathrm{jX}, \mathrm{jB})$ to ensure the start of oscillation and the transfer of the output power to the external load (50Ω).
3) Find the values of the lumped elements parameters implementing X and B (select an inductor or a capacitor depending on the sign of X and B)

Solution

Exercise 1

1) $\theta_{\max }=90^{\circ}, \varphi_{\max }=0^{\circ}$
2) The antenna gain is obtained from the formula:
$G=\eta 4 \pi\left[\int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} f(\theta) \sin \theta d \theta\right]^{-1}=\frac{4 \pi \eta}{\int_{-\pi / 2}^{\pi / 2} \cos (\varphi) d \varphi \int_{2 \pi / 5}^{3 \pi / 5} \sin (5 \theta) \sin (\theta) d \theta}=\frac{4 \pi \eta}{0.7925}=13.4773$
3) $x_{s}=H \cdot \tan \left(90-\theta_{\text {tilt }}\right) \Rightarrow \theta_{\text {tilt }}=90-\tan ^{-1}\left(\frac{x_{s}}{H}\right)=1.146^{\circ}$
4)

$R_{s}=\frac{x_{s}}{\cos \left(\theta_{\text {tilt }}\right)}=1500.3 \mathrm{~m}$
$S_{R}=\frac{P_{T} G}{4 \pi R_{s}^{2}}=\frac{1 \cdot 13.4773}{4 \pi \cdot 1500.3^{2}}=4.765 \cdot 10^{-7} \mathrm{~W} / \mathrm{m}^{2}$
$f_{\varphi}\left(\varphi_{3 d B}\right)=0.5 \Rightarrow \varphi_{3 d B}= \pm \pi / 3$
5) $f_{\theta}\left(\theta_{3 d B}\right)=0.5 \Rightarrow \theta_{3 d B}=\frac{1}{5}\left(\frac{\pi}{6}+2 \pi\right)=\frac{13}{30} \pi$

$$
=\frac{1}{5}\left(\frac{5 \pi}{6}+2 \pi\right)=\frac{17}{30} \pi
$$

The above angles are those referred to the antenna pointing. Taking into account the tilting, the angle $\theta_{3 d B}^{\prime}$ with respect the absolute coordinate is given by $\theta_{3 d B}^{\prime}=\theta_{3 d B}+\theta_{\text {tilt }}$
6) The distance $\mathrm{R}_{3 \mathrm{~dB}}$ is given by: $R_{3 d B}=H / \cos \left(\theta_{3 d B}^{\prime}-90\right)=131.9 \mathrm{~m}$. Then:

$$
S_{R_{3 a B}}=\frac{P_{T} G}{4 \pi R_{3 d B}^{2}} f\left(\theta_{3 d B}\right) f\left(\varphi_{3 d B}\right)=1.548 \cdot 10^{-5} \mathrm{~W} / \mathrm{m}^{2}
$$

Exercise 2

a) Equivalent noise scheme :

Where:
$T_{f}=293\left(10^{\frac{A_{f}}{10}}-1\right)=171.4^{\circ} \mathrm{K}, T_{L N A}=293\left(10^{\frac{N F}{10}}-1\right)=1175.5^{\circ} \mathrm{K}$
The equivalent noise temperature at the input of the receiver is then given by:
$T_{e q}=T_{A}+T_{L N A}+\frac{T_{f}}{G_{R F}}+\frac{T_{S S B} A_{f}}{G_{R F}}+\frac{T_{I F} A_{c} A_{f}}{G_{R F}}=1887.3^{\circ} \mathrm{K}$
$P_{N}=K T_{e q} B=5.21 \cdot 10^{-13} \mathrm{~W}$
b) Friis equation:
$P_{r}=P_{T} \cdot\left(\frac{\lambda}{4 \pi R}\right)^{2} \cdot G_{T} \cdot G_{R}=0.002152 / R^{2}$
c) Evaluation of SNR:
$S N R=\frac{P_{r}}{P_{N}}=\left(\frac{E_{b}}{N_{0}}\right)\left(\frac{R}{B}\right)=150$
d) Evaluation of the distance R:
$P_{r}=S N R \cdot P_{N}=7.815 \cdot 10^{-11}=0.002152 / R^{2}$
$R=\sqrt{\frac{0.002152}{7.815 \cdot 10^{-11}}}=5.248 \mathrm{Km}$

Exercise 3

The transistor is unconditionally stable with Gmax $=12.1 \mathrm{~dB}$.
The optimum gamma are: $\Gamma_{\mathrm{S}}=0.84 \angle-147.5^{\circ}, \Gamma_{\mathrm{L}}=0.69 \angle 40.8^{\circ}$.
$\beta I_{1}=139.2 / 2=69.6^{\circ}, Z_{\mathrm{cl}}=50 \Omega$.
$Z_{\text {in }}=50 \cdot 0.18=9.05$
$Z_{c 2}=\sqrt{Z_{\text {in }} \cdot 50}=21.27 \Omega$

Exercise 4

The mapping circle of $\Gamma \mathrm{s}$ is drawn on the S.C with $\mid \Gamma$ out $\mid=1.5$. The two intersections with the outer circle are: $\Gamma 1=1 \angle 120.36, \Gamma 2=1 \angle 81.54$.
We assign $\Gamma \mathrm{s}=\Gamma 2$, from which $\mathrm{Zs}=\mathrm{j} 1.1650=\mathrm{j} 58 \Omega$. The inductance Ls is then derived as:
$L_{s}=\frac{X_{s}}{2 \pi f_{0}}=21.37 \mathrm{nH}$
At the transistor out we get $\frac{Z_{\text {out }}}{50}=-0.726-j 1.5$.
Imposing: $Z_{L}=\frac{-\operatorname{Re}\left(Z_{\text {out }}\right)}{3}-\operatorname{Im}\left(Z_{\text {out }}\right)$ we get $\mathrm{Z}_{\mathrm{L}}=50 \cdot(0.24+\mathrm{j} 1.5)$.
The design of the matching network can be carried out either with the S.C. or by means of the formulas. The following results are obtained:
$\mathrm{X}=1.073 \cdot 50=53.64 \Omega, \mathrm{~B}=-1.776 / 50=-0.03552 \mathrm{~S}$.
The lumped components value is then computed as follows:
$L_{X}=\frac{|X|}{2 \pi f_{0}}=19.76 \mathrm{nH}$
$L_{B}=\frac{1}{|B| 2 \pi f_{0}}=10.37 \mathrm{nH}$

