RF SYSTEMS End Test on 21 January 2022

Surname & Name	
Identification Number	
Signature	

Exercise 1

A power amplifier operating at 1.2 GHz with the scheme in the figure must be designed. The active device is characterized by the following S parameters: $S_{11}=0.37\angle -160.8^{\circ}$, $S_{21}=3.3\angle 23.68^{\circ}$, $S_{12}=0.091\angle 22.9^{\circ}$, $S_{22}=0.25\angle -91.7^{\circ}$. The IP3 parameter of the device is also assigned: IP3=22 dBm.

- Assume S_{in}(t) a 2-tone signal with average power P_{in}=0 dBm. Evaluate the average output power that determines the carrier-to-intermodulation (CI) of the output signal not smaller than 30 dB. Compute then the required transducer gain G_T (Note that this gain cannot exceed the maximum gain of the transistor).
- 2) The conjugate matching at the transistor output is assumed. Evaluate Γ_S and Γ_L so that the previously computed G_T is obtained. Note that Γ_S must be selected so that it can be realized with the assigned input network (Hint: the impedance Zs corresponding to Γ_S is the series of 50 Ω with a positive reactance. Then, on the Smith Chart, Γ_S must be on a specific circle).
- 3) Compute the value of L_S, L₁ and L₂ of the input and output networks. Note that only positive values are meaningful.

Exercise 2

An oscillator working at $f_0=1$ GHz must be designed with the scheme in the figure (the S parameters of the active device are also reported).

- 1) Imposing $|\Gamma_{out}|=1.2$ evaluate Γ_A and Γ_B that allow the start of the oscillation (choose Γ_A so that it can be implemented with the largest value of the inductor L_A). After Γ_A and Γ_B are obtained, check that the oscillation can actually starts.
- 2) Compute the value of the inductor L_A
- 3) The output network transforms the load (50 Ω) into Γ_B . Assuming that the series resonator resonates at $f_r=2f_0$, compute the electrical length ϕ and the values of L_0 and C_0 of the output network. Hint: The resonator at f_0 is represented by a susceptance whose value B is obtained by the design of the transforming network. To find L₀ and C₀ use the following expression:

$$B = \frac{1}{2\pi f_r L_o \left(\frac{f_r}{f_0} - \frac{f_0}{f_r}\right)} > 0, \text{ with } f_r = \frac{1}{2\pi \sqrt{L_o C_o}} = 2f_0. \text{ Being } B > 0, \text{ this constraint must be}$$

taken into account during the design of the output network.

4) What is the advantage of using the series resonators in the output network?

Solutions

Exercise 1

From the S parameter we know that the device is unconditionally stable with G_{TMAX}=11.6 dB.

- 1) The following equation should be used: $CI_{dB} \simeq 2IP_3 2P_m + 6$, from which we get $P_m=10$ dBm. Being the input power 0 dBm, the required transducer gain is G_T=10 dB (admissible because < G_{TMAX}).
- 2) Being the matching at output imposed, we design the amplifier using the Available Power Gain. First, we draw the circle with $G_{AV}=10$ dB and select a point on this circle (this point represents Γ_S). The selection is not free because the input network imposes that the impedance z_S (corresponding to Γ_S) must be in the form $(1+jx_S)$, with $x_S>0$. Then the selected point must be on the intersection of the G_{AV} circle with upper part of the circle r=1: $\Gamma_S=0.314\angle 71.68^{\circ}$ (corresponding to $z_S=1+j0.662$).

To have the G_{AV} equal to G_T we must then impose the conjugate matching at output. With the S.C. we get $\Gamma_L=0.168 \ge 104.49^\circ$.

3) The inductance L_s is determined from X_s=50·x_s=50·0.662=33.1 Ω : $L_s = X_s/(2\pi f) = 4.39$ nH. To design the double stub network at output is convenient to consider the dual problem (matching $\Gamma_{out} = (\Gamma_L)^*$ to 50 Ohm):

We start by inserting $(\Gamma_L)^*$ in the S.C., store this value in memory and draw the circle g=1 rotated by 200° in the load direction. Then select one of the two intersections of this circle with the circle g=const passing for the load (g=1.029). The imaginary part of Delta Y represents the susceptance b₁=-0.477. Note that this value is acceptable being the susceptance implemented by an inductor. The value of L₁ is obtained from: $L_1 = -50/(2\pi fb_1) = 13.9$ nH. Now we give and increment of -200° to the current point to arrive at the input of the transmission line. This point must be on the circle g=1. In fact, from the S.C. we obtain y₂=1+j0.133. To arrive to the center of the S.C. the susceptance b₂=-0.133 must then be added, which is realized by the inductance $L_2 = -50/(2\pi fb_2) = 49.86$ nH.

Exercise 2

From the S parameter we get K=0.473 < 1 then the device is potentially instable and suitable for the oscillator design.

- We draw the Γs mapping circle with |Γ_{out}|=1.2, which intersects the outer circle of the Smith Chart in two points. We select the one with the largest normalized reactance: Γ_A =1∠ 89.4°. The output reflection coefficient results 1.2∠-137.03°, to which correspond the impedance z_{out}=-0.105-0.39i. To ensure the start of oscillation we assign z_B=0.035+0.39i, corresponding to Γ_B = 0.941∠137.35°. To check the oscillation condition at the input of the transistor we determine the input reflection coefficient with the S.C. determined by Γ_B : |Γ_{in}|=1.02. Being >1 both |Γ_{in}| and |Γ_{out}| the start of the oscillation is confirmed.
- 2) From Γ_A we derive with the S.C. $x_A=1.011$ and then $X_A=50$ $x_A=50.55 \Omega$. The inductance LA is then given by: $L_A = \frac{X_A}{2\pi f_0} = 8.0453 \text{ nH}$
- 3) The transforming network has the single stub topology. Assume the series resonator represented by its normalized susceptance *b*. As explained in the text, this susceptance must be positive. Starting from Γ_B we move on the circle with constant gamma in the load direction until arrive at

the intersection with the circle g=1 where the imaginary part of Y is positive. The variation of the phase of gamma ($\Delta \phi$ =62.43°) defines the electrical length of the line: $\phi = \Delta \phi/2 = 31.21^\circ$. The admittance in the direction of the load observed at the intersection is 1+jb=1+j5.56, then *b*=5.56.

Imposing:

$$B = \frac{1}{2\pi f_r L_o \left(\frac{f_r}{f_0} - \frac{f_0}{f_r}\right)} = 0.02 \cdot 5.56 = 0.1112 ,$$

we get: $L_o = \frac{1}{2\pi \cdot 2 \cdot 0.1668 \cdot 10^9} = 0.48$ nH. From the resonance condition at f_r =2GHz we obtain $C_o = \frac{1}{(2\pi \cdot f_r)^2 L_0} = 13.19$ pF.

4) The presence of the series resonator introduces a short circuit at the second harmonic frequency. In this way this harmonic is removed from the load voltage, improving the spectral purity of the oscillator.