RF SYSTEMS 21 February 2018

Surname & Name		
Identification Number		
Signature		

Exercise 1

It is given an antenna operating at 10 GHz having the following directivity function (constant along the angle φ): $f(\vartheta) = \left(\frac{\sin(10 \cdot \vartheta)}{10 \cdot \vartheta}\right)^2$ for $0 < \vartheta < \pi/2$ (angle ϑ in rad). It is reminded that the main beam is related to the range $0 < \vartheta < \vartheta_{\text{max}}$ with $f(\vartheta_{\text{max}}) = 0$ (first null of *f*).

- 1) Evaluate \mathscr{G}_{\max} , the width of the main beam $\Delta_{\mathscr{G}_{B}}$ and the directivity gain *D* of the antenna assuming f=0 for $\mathscr{G} > \mathscr{G}_{\max}$. Assume the following approximation for the gain computation: $Q(\mathscr{G}) = \int_{0}^{\mathscr{G}} f(x) \sin(x) dx \approx 0.01372 \cdot \mathscr{G}^{3} - 0.042609 \cdot \mathscr{G}^{2} + 0.045343 \cdot \mathscr{G} \qquad (\mathscr{G} \text{ in rad})$
- 2) Evaluate the exact value of the half-power beamwidth (solve $f(\mathcal{G}_{3dB}) = 0.5$ by trial). Compute also the beamwidth $(2\theta_B)$ imposing $f(\mathcal{G}) = 1$ for $0 < \mathcal{G} < \theta_B$ with the directivity gain *D* obtained at point 1).
- 3) Evaluate the actual directivity gain of the antenna (including the side lobes) and its beam efficiency.

Exercise 2

Consider a mobile receiving station R for a satellite communication system at 10 GHz which employs the receiving antenna of exercise 1. The antenna is optimally pointed in the satellite direction (elevation angle α =26°). The power density of the satellite signal at the receiving station is SR=3·10⁻⁷ W/m².

At distance L from this station there is the transmitter T operating on the same frequency, with $P_T=1$ W, connected to an omnidirectional antenna (gain G_T=2 dB). The signal from this transmitter represents an interferer for the receiving station R and must be treated as noise.

- 1) Compute the received power P_r from the satellite at the antenna output (consider the actual gain of the antenna computed at point 3 of exercise 1)
- 2) The system SNR is defined: $SNR_{sys} = \frac{P_r}{P_N + P_{int}}$, where P_r is the received power from the

satellite, P_N is the equivalent noise power at the antenna output produced by the receiver $(P_N = K T_{eq} B)$ and P_{int} is the power received from the interfering transmitter.

Assuming B=32 MHz and $T_{eq}=3000$ °K, evaluate the minimum value of the distance L of the interfering transmitter for which SNR_{sys} is at least 30 dB.

Hint: the actual directivity function of the receiving antenna must be taken into account for the evaluation of P_{int} ; note that angle α represents the deviation with respect the optimum pointing (then coincides with the variable \mathcal{G} of the directivity function).

3) The receiving station employs a direct conversion receiver having the following block diagram:

Determine the noise temperature T_{dem} of the base band demodulator producing the equivalent temperature at input of the receiver Teq=3000 °K

Exercise 3

Consider the following amplifier operating at 1 GHz. The following parameters are assigned: $Z_{c0}=50\Omega$, $Z_{c1}=35\Omega$, $S_{11}=0.844 \angle -62.3^{\circ}$, $S_{12}=0.06 \angle 42.7^{\circ}$, $S_{21}=5.273 \angle 121.7^{\circ}$, $S_{22}=0.52 \angle -52.6^{\circ}$ The requirements concern the transducer gain $G_T=18$ dB and the conjugate matching condition at the input ($\Gamma_{in}=0$)

1) Evaluate Γ s and Γ_L in order to satisfy the requirements (select a real, positive value for Γ_L)

2) Design the double-stub network at input (i.e. compute the value of C_1 and C_2). Note that Γ_{in} is zero when a suitable load is assigned at the opposite side of this network.

3) Design the output network, i.e. compute C and ϕ_1 .

Note that the computed values of all the capacitors must be positive.

Two amplifiers identical to those above designed are then inserted in the following configuration:

- 4) Define the type of directional coupler to use for getting the overall transducer gain (In \rightarrow Out) equal to G_T (the same of the two amplifiers). Specify the coupling parameter (magnitude and phase) of the directional couplers selected.
- 5) What is the value of the input (Γ_{In}) and output (Γ_{Out}) reflection coefficients in this configuration?

Solution

Exercise 1

1)
$$f(\theta_{max})=0 \Rightarrow \theta_{max}=\pi/10 (18^{\circ}), \ \Delta\theta_{MB}=2\theta_{max}=36^{\circ}$$

 $D = \frac{4\pi}{\int_{2\pi}^{2\pi} \theta_{max}^{9}} f(\theta)\sin(\theta)d\theta = \int_{0}^{9} f(\theta)\sin(\theta)d\theta$
2) $f(\theta_{3dB})=0.5 \Rightarrow \theta_{3dB}=\pi/22.58 (7.97^{\circ}), \ \Delta\theta_{3dB}=2\theta_{3dB}=15.96^{\circ}$
 $2\theta_{B} = 2\cos^{-1}(1-2/D) = 0.2896 \text{ rad} (16.6^{\circ})$
 $D_{act} = \frac{4\pi}{\int_{0}^{2\pi} d\phi \int_{0}^{\pi} f(\theta)\sin(\theta)d\theta} = \frac{2}{\int_{0}^{\pi} f(\theta)\sin(\theta)d\theta} = 103.82 (20.16 \text{ dB})$
3) $BE = \frac{D_{act}}{D} = 0.5432$

Exercise 2

1)
$$A = G \frac{\lambda^2}{4\pi} = D_{act} \frac{(c/f)^2}{4\pi} = 0.0137 \text{ m}^2$$

 $P_r = SR \cdot A = 2.23 \cdot 10^{-9} \text{ W}$
 $P_N = KT_{eq}B = 1.325 \cdot 10^{-12} \text{ W}$
2) $P_{int} = \frac{P_r}{SNR} - P_N = 0.906 \cdot 10^{-12} \text{ W}$
Using the Friis Equation:
 $P_{int} = P_T \left(\frac{\lambda}{4\pi L}\right)^2 G_T G_{act} f\left(26\frac{\pi}{180}\right)$
 $\frac{4\pi L}{\lambda} = \sqrt{\frac{P_T G_T G_{act} f\left(26\frac{\pi}{180}\right)}{P_{int}}} = 2.925 \cdot 10^6 \Rightarrow L = 6.983 \text{ Km}$

$$\begin{split} T_{eq} &= T_a + T_0 \left(10^{A_f/10} - 1 \right) + T_0 \left(10^{NF/10} - 1 \right) 10^{A_f/10} + T_{IQ} 10^{\left(A_f - G_{LNA}\right)/10} + T_{DEM} 10^{\left(A_f + A_c - G_{LNA}\right)/10} = 3000 \\ 640.66 + T_{DEM} 10^{0.2} &= 3000 \\ T_{DEM} &= 1488.6 \ ^{\circ}\mathrm{K} \end{split}$$

Exercise 3

- 1) Draw the circle G_p =const.=18 dB. Select the intersection of this circle with the real axis (there are two intersections; the one to select is the real, positive number). We have: Γ_L =0.407 $\angle 0^\circ$. To get G_p = G_T we must impose the conjugate matching at input: Γ_s = conj(Γ_{inT})=0.731 $\angle 68.9^\circ$.
- 2) We assume $\Gamma_{inT}=0.731 \angle -68.9^{\circ}$ as the load terminating the input network. The design of the network will be carried out to get $\Gamma_{in}=0$.
 - a. Draw the circle g=1 rotated by 90° toward the load
 - b. Draw the circle g=const, passing for Γ_{inT} .
 - c. Store Γ_{inT} and select the intersection between the circles where *DeltaB* increases. The increment is $b_1=0.975$
 - d. Give an increment $\Delta \phi = -90^{\circ}$ (source direction) to the phase of gamma
 - e. Take the opposite of Im(Y) of the current point. It represents the increment moving the current point to the center of the S.C. We have: $b_2=3.79$

The capacitances are the obtained as:

$$C_1 = \frac{b_1 \cdot 0.02}{2\pi f} = 3.1 \text{ pF}, \qquad C_2 = \frac{b_2 \cdot 0.02}{2\pi f} = 12.06 \text{ pF}$$

3) Let compute first the impedance Z'_L in parallel to C looking in the load direction:

Using the S.C. (normalized to $Z_{c1}=35\Omega$) we get $Z_{L}=32.9$ -j11.97 Ω . Now Z_{L} must be transformed into Γ_{L} with a single-stub network:

$$\xrightarrow{\Gamma_{L}} \begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

- a. Draw the circle $|\Gamma|=0.407$
- b. Enter \dot{Z}_{L} (normalized to 50 Ω), store, draw the circle *g=const* passing for the current point
- c. Select the intersection between the circles where *b* increases. DeltaB=b=0.489
- d. Store. Enter $\Gamma = \Gamma_1 = 0.407$. The variation of the gamma phase is $\Delta \phi = 131.9^{\circ}$
- e. Being the movement toward the source, ϕ_1 is given by: $\phi_1 = (360 \Delta \phi)/2 = 114.05^{\circ}$.
- f. The capacitance C is given by: $C_1 = \frac{b \cdot 0.02}{2\pi f} = 1.56 \text{ pF}$
- 4) The directional couplers are 3dB hybrids, i.e. C=0.5 \angle 90°. $\Gamma_{In}=\Gamma_{Out}=0$.