RF SYSTEMS

21 February 2018

Surname \& Name
 Identification Number

Signature

Exercise 1

It is given an antenna operating at 10 GHz having the following directivity function (constant along the angle φ): $f(\vartheta)=\left(\frac{\sin (10 \cdot \vartheta)}{10 \cdot \vartheta}\right)^{2}$ for $0<\vartheta<\pi / 2$ (angle ϑ in rad). It is reminded that the main beam is related to the range $0<\vartheta<\vartheta_{\max }$ with $f\left(\vartheta_{\max }\right)=0$ (first null of f).

1) Evaluate $\vartheta_{\max }$, the width of the main beam $\Delta_{\theta_{\mathrm{B}}}$ and the directivity gain D of the antenna assuming $f=0$ for $\vartheta>\vartheta_{\max }$. Assume the following approximation for the gain computation:

$$
Q(\vartheta)=\int_{0}^{\vartheta} f(x) \sin (x) d x \cong 0.01372 \cdot \vartheta^{3}-0.042609 \cdot \vartheta^{2}+0.045343 \cdot \vartheta \quad(\vartheta \text { in rad })
$$

2) Evaluate the exact value of the half-power beamwidth (solve $f\left(\vartheta_{3 d B}\right)=0.5$ by trial). Compute also the beamwidth ($2 \theta_{B}$) imposing $f(\vartheta)=1$ for $0<\vartheta<\theta_{B}$ with the directivity gain D obtained at point 1).
3) Evaluate the actual directivity gain of the antenna (including the side lobes) and its beam efficiency.

Exercise 2

Consider a mobile receiving station R for a satellite communication system at 10 GHz which employs the receiving antenna of exercise 1 . The antenna is optimally pointed in the satellite direction (elevation angle $\alpha=26^{\circ}$). The power density of the satellite signal at the receiving station is $\mathrm{SR}=3 \cdot 10^{-7} \mathrm{~W} / \mathrm{m}^{2}$.
At distance L from this station there is the transmitter T operating on the same frequency, with $P_{T}=1$ W, connected to an omnidirectional antenna (gain $\mathrm{G}_{\mathrm{T}}=2 \mathrm{~dB}$). The signal from this transmitter represents an interferer for the receiving station R and must be treated as noise.

1) Compute the received power P_{r} from the satellite at the antenna output (consider the actual gain of the antenna computed at point 3 of exercise 1)
2) The system SNR is defined: $S N R_{s y s}=\frac{P_{r}}{P_{N}+P_{\text {int }}}$, where P_{r} is the received power from the satellite, P_{N} is the equivalent noise power at the antenna output produced by the receiver ($P_{N}=K \cdot T_{e q} B$) and $P_{\text {int }}$ is the power received from the interfering transmitter.
Assuming $B=32 \mathrm{MHz}$ and $T_{e q}=3000^{\circ} \mathrm{K}$, evaluate the minimum value of the distance L of the interfering transmitter for which $S N R_{\text {sys }}$ is at least 30 dB .
Hint: the actual directivity function of the receiving antenna must be taken into account for the evaluation of $P_{\text {int }}$; note that angle α represents the deviation with respect the optimum pointing (then coincides with the variable ϑ of the directivity function).
3) The receiving station employs a direct conversion receiver having the following block diagram:

Determine the noise temperature $T_{\text {dem }}$ of the base band demodulator producing the equivalent temperature at input of the receiver $\mathrm{Teq}=3000^{\circ} \mathrm{K}$

Exercise 3

Consider the following amplifier operating at 1 GHz . The following parameters are assigned:

$$
\mathrm{Z}_{\mathrm{c} 0}=50 \Omega, \mathrm{Z}_{\mathrm{c} 1}=35 \Omega, \mathrm{~S}_{11}=0.844 \angle-62.3^{\circ}, \mathrm{S}_{12}=0.06 \angle 42.7^{\circ}, \mathrm{S}_{21}=5.273 \angle 121.7^{\circ}, \mathrm{S}_{22}=0.52 \angle-52.6^{\circ}
$$

The requirements concern the transducer gain $\mathrm{G}_{\mathrm{T}}=18 \mathrm{~dB}$ and the conjugate matching condition at the input ($\Gamma_{\text {in }}=0$)

1) Evaluate Γ s and Γ_{L} in order to satisfy the requirements (select a real, positive value for Γ_{L})
2) Design the double-stub network at input (i.e. compute the value of C_{1} and C_{2}). Note that $\Gamma_{\text {in }}$ is zero when a suitable load is assigned at the opposite side of this network.
3) Design the output network, i.e. compute C and ϕ_{1}.

Note that the computed values of all the capacitors must be positive.

Two amplifiers identical to those above designed are then inserted in the following configuration:

4) Define the type of directional coupler to use for getting the overall transducer gain (In \rightarrow Out) equal to G_{T} (the same of the two amplifiers). Specify the coupling parameter (magnitude and phase) of the directional couplers selected.
5) What is the value of the input $\left(\Gamma_{\text {In }}\right)$ and output ($\Gamma_{\text {out }}$) reflection coefficients in this configuration?

Solution

Exercise 1

1) $f\left(\theta_{\text {max }}\right)=0 \rightarrow \theta_{\text {max }}=\pi / 10\left(18^{\circ}\right), \Delta \theta_{\mathrm{MB}}=2 \theta_{\max }=36^{\circ}$

$$
D=\frac{4 \pi}{\int_{0}^{2 \pi} d \varphi \int_{0}^{\vartheta_{\max }} f(\vartheta) \sin (\vartheta) d \vartheta}=\frac{2}{\int_{0}^{\vartheta_{\max }} f(\vartheta) \sin (\vartheta) d \vartheta}=191.12(22.81 \mathrm{~dB})
$$

2) $f\left(\theta_{3 d B}\right)=0.5 \rightarrow \theta_{3 d B}=\pi / 22.58\left(7.97^{\circ}\right), \Delta \theta_{3 \mathrm{~dB}}=2 \theta_{3 d B}=15.96^{\circ}$
$2 \theta_{B}=2 \cos ^{-1}(1-2 / D)=0.2896 \mathrm{rad}\left(16.6^{\circ}\right)$
3)

$$
D_{a c t}=\frac{4 \pi}{\int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} f(\vartheta) \sin (\vartheta) d \vartheta}=\frac{2}{\int_{0}^{\pi} f(\vartheta) \sin (\vartheta) d \vartheta}=103.82(20.16 \mathrm{~dB})
$$

$$
B E=\frac{D_{\text {act }}}{D}=0.5432
$$

Exercise 2

1) $A=G \frac{\lambda^{2}}{4 \pi}=D_{\text {act }} \frac{(c / f)^{2}}{4 \pi}=0.0137 \mathrm{~m}^{2}$
$P_{r}=S R \cdot A=2.23 \cdot 10^{-9} \mathrm{~W}$
$P_{N}=K T_{e q} B=1.325 \cdot 10^{-12} \mathrm{~W}$
2)

$P_{\text {int }}=\frac{P_{r}}{S N R}-P_{N}=0.906 \cdot 10^{-12} \mathrm{~W}$
Using the Friis Equation:
$P_{\mathrm{int}}=P_{T}\left(\frac{\lambda}{4 \pi L}\right)^{2} G_{T} G_{\text {act }} f\left(26 \frac{\pi}{180}\right)$
$\frac{4 \pi L}{\lambda}=\sqrt{\frac{P_{T} G_{T} G_{\text {act }} f\left(26 \frac{\pi}{180}\right)}{P_{\text {int }}}}=2.925 \cdot 10^{6} \Rightarrow L=6.983 \mathrm{Km}$
3)

$T_{e q}=T_{a}+T_{0}\left(10^{A_{f} / 10}-1\right)+T_{0}\left(10^{N F / 10}-1\right) 10^{A_{f} / 10}+T_{I Q} 10^{\left(A_{f}-G_{L N A}\right) / 10}+T_{D E M} 10^{\left(A_{f}+A_{c}-G_{L N A}\right) / 10}=3000$
$640.66+T_{\text {DEM }} 10^{0.2}=3000$
$T_{\text {DEM }}=1488.6^{\circ} \mathrm{K}$

Exercise 3

1) Draw the circle $G_{p}=$ const. $=18 \mathrm{~dB}$. Select the intersection of this circle with the real axis (there are two intersections; the one to select is the real, positive number). We have: $\Gamma_{\mathrm{L}}=0.407 \angle 0^{\circ}$. To get $G_{p}=G_{T}$ we must impose the conjugate matching at input: $\Gamma_{\mathrm{s}}=\operatorname{conj}\left(\Gamma_{\mathrm{inT}}\right)=0.731 \angle 68.9^{\circ}$.
2) We assume $\Gamma_{\mathrm{inT}}=0.731 \angle-68.9^{\circ}$ as the load terminating the input network. The design of the network will be carried out to get $\Gamma_{\text {in }}=0$.
a. Draw the circle $g=1$ rotated by 90° toward the load
b. Draw the circle $g=$ const, passing for $\Gamma_{\text {inT }}$.
c. Store Γ_{inT} and select the intersection between the circles where DeltaB increases. The increment is $b_{1}=0.975$
d. Give an increment $\Delta \phi=-90^{\circ}$ (source direction) to the phase of gamma
e. Take the opposite of $\operatorname{Im}(\mathrm{Y})$ of the current point. It represents the increment moving the current point to the center of the S.C. We have: $b_{2}=3.79$
The capacitances are the obtained as:
$C_{1}=\frac{b_{1} \cdot 0.02}{2 \pi f}=3.1 \mathrm{pF}, \quad C_{2}=\frac{b_{2} \cdot 0.02}{2 \pi f}=12.06 \mathrm{pF}$
3) Let compute first the impedance Z_{L}^{\prime} in parallel to C looking in the load direction:

Using the S.C. (normalized to $\mathrm{Z}_{\mathrm{c} 1}=35 \Omega$) we get $\mathrm{Z}_{\mathrm{L}}{ }^{\prime}=32.9-\mathrm{j} 11.97 \Omega$.
Now Z' ${ }_{\mathrm{L}}$ must be transformed into Γ_{L} with a single-stub network:

a. Draw the circle $|\Gamma|=0.407$
b. Enter $\mathrm{Z}_{\mathrm{L}}^{\prime}$ (normalized to 50Ω), store, draw the circle $g=$ const passing for the current point
c. Select the intersection between the circles where b increases. Delta $B=b=0.489$
d. Store. Enter $\Gamma=\Gamma_{\mathrm{L}}=0.407$. The variation of the gamma phase is $\Delta \phi=131.9^{\circ}$
e. Being the movement toward the source, ϕ_{1} is given by: $\phi_{1}=(360-\Delta \phi) / 2=114.05^{\circ}$.
f. The capacitance C is given by: $C_{1}=\frac{b \cdot 0.02}{2 \pi f}=1.56 \mathrm{pF}$
4) The directional couplers are 3 dB hybrids, i.e. $\mathrm{C}=0.5 \angle 90^{\circ} . \Gamma_{\mathrm{In}}=\Gamma_{\text {Out }}=0$.

