RF SYSTEMS - End Term test 22 ${ }^{\text {th }}$ January 2020

Surname \& Name

Identification Number

Signature

Exercise 1

The following scheme shows a an amplifier operating at $6.5 \mathrm{GHz}\left(\mathrm{Z}_{0}=50 \mathrm{Ohm}\right)$

The transistors are characterized by the following parameters $\left(\mathrm{Z}_{0}=50 \Omega\right)$:
$\mathrm{S}_{11}=0.814 \angle-144.78^{\circ}, \mathrm{S}_{12}=0.075 \angle-15.38^{\circ} \mathrm{S}_{21}=2.612 \angle 45.62^{\circ} \quad \mathrm{S}_{22}=0.55 \angle-108.91^{\circ}$
$\mathrm{NF}_{\text {min }}=1 \mathrm{~dB}, \Gamma_{\text {min }}=0.8 \angle 122, \mathrm{r}_{\mathrm{n}}=0.26$
Note that the transistor is potentially instable with MSG=15.4 dB
The input network is constituted by an assigned PI circuit ($\mathrm{C}_{1}=0.6 \mathrm{pF}, \mathrm{L}=3.82 \mathrm{nH}, \mathrm{C}_{2}=0.182 \mathrm{pF}$), followed by a transmission line with electrical length Φ_{S} and characteristic impedance Z_{0}. Note that $\Gamma_{\mathrm{s} 1}$ and Γ_{s} differ only by the phase value.

1) The Power Gain $\left(\mathrm{G}_{\mathrm{P}}\right)$ of the amplifier is required to be 15 dB . Chose a real value of Γ_{L} in order this requirement is satisfied
2) Evaluate Γ_{S} in order to get the Transducer Gain $\left(\mathrm{G}_{\mathrm{T}}\right)$ equal to Gp.
3) Evaluate $\Gamma_{\mathrm{s} 1}$ from the assigned PI network with the electronic Smith Chart. Verify that $\left|\Gamma_{\mathrm{s}}\right|=\left|\Gamma_{\mathrm{s} 1}\right|$
4) Compute the electrical length Φ_{S} to get the required Γ_{s}.
5) Design the transforming network at output. Note that L network transforms 50Ω into $\Gamma_{\mathrm{L} 1}$, which can be evaluated from Γ_{L} being the electrical length of the output line assigned $\left(\Phi=90^{\circ}\right)$. Note: the computed values of the lumped components in the network must be positive!
6) Evaluate the noise figure and the input reflection coefficient $\Gamma_{i n}$ of the amplifier

Exercise 2

The following scheme refers to an oscillator working at $\mathrm{f}_{\mathrm{osc}}=2 \mathrm{GHz}$. The S parameters of the transistor are also reported on the figure (defined with respect to $\mathrm{Z}_{0}=50 \Omega$).

1) Find the value of Γ_{1} (realizable with the assigned network) that determines the maximum of $\left|\Gamma_{\text {out }}\right|$. Hint: draw various mapping circles of $\Gamma \mathrm{s}$ with increasing value of $\left|\Gamma_{\text {out }}\right|$ until the mapping circle does not intersect the unit circle.
2) Evaluate the electrical length Φ_{1} of the input stub.
3) From $\Gamma_{\text {out }}$ evaluate the admittance Y_{2} and compute the parameters Φ_{2} and Z_{cl} of the output network. Hint: the 90° line transforms the load impedance into a pure resistance; the shortcircuited stub add a pure susceptance in parallel to the transformed resistance.
4) Assuming about constant the S parameters, verify if the oscillation is still possible at 2.35 GHz

Solutions

Exercise 1

1) Draw the circle $\mathrm{G}_{\mathrm{P}}=15 \mathrm{~dB}$ and select the intersection with the real axis. $\Gamma_{\mathrm{L}}=0.389 \angle 180^{\circ}$.
2) To get $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{P}}$ we must impose the input matched. Then $\Gamma_{\mathrm{S}}=\Gamma_{\mathrm{in}}{ }^{*}=0.893 \angle 144.13^{\circ}$.
3) First we must evaluate the normalized susceptance and reactance of the circuit elements: $b_{1}=\frac{2 \pi f_{0} C_{1}}{Y_{0}}=1.225, \quad b_{2}=\frac{2 \pi f_{0} C_{2}}{Y_{0}}=.3717, \quad x=\frac{2 \pi f_{0} L}{Z_{0}}=3.12$
We enter the current point in the S.C. as the admittance with $g=1$ and $\mathrm{b}=\mathrm{b} 1$. Then we give the following increments: reactance $=3.12$, susceptance $=.3717$. We get $\Gamma_{\mathrm{s} 1}=0.893 \angle 0$. Actually $\left|\Gamma_{\mathrm{s}}\right|=\left|\Gamma_{\mathrm{s} 1}\right|$.
4) Store Γ_{s}. Enter $\Gamma_{\mathrm{s} 1}$. The phase of Delta Gamma divided by 2 is the length $\Phi_{\mathrm{s}}=107.94^{\circ}$
5) First evaluate $\Gamma_{\mathrm{L} 1}$ by increasing of 180° the phase of Γ_{L}. $\Gamma_{\mathrm{L} 1}=0.389 \angle 0^{\circ}$. Then evaluate $b_{\text {out }}$ and $x_{\text {out }}$ with the S.C. Note that both of them must be negative to be implemented with the imposed components. We get: $b_{\text {out }}=-0.496, x_{\text {out }}=-1.129$. Then we derive the lumped components:

$$
L_{\text {out }}=-\frac{1}{2 \pi f_{0} \cdot b_{\text {out }} \cdot Y_{0}}=2.47 \mathrm{nH}, C_{\text {out }}=-\frac{1}{2 \pi f_{0} \cdot X_{\text {out }} \cdot 50}=0.434 \mathrm{pF}
$$

6) To get the noise figure we enter Γ_{S} in the S.C. and ask for the optimum Γ_{L}. We get $\mathrm{NF}=3 \mathrm{~dB}$. The input reflection coefficient is zero because we imposed the input matched (and the input network is lossless).

Exercise 2

1) Following the suggestion we get $\left|\Gamma_{1}\right|=1 \angle 129.1$ with $\left|\Gamma_{\text {out }}\right|=1.58$.
2) Store Γ_{1}. Enter the open circuit $(\Gamma=1)$. The increment of Delta Gamma Phase divided by 2 is $\Phi_{1}=115.44^{\circ}$.
3) With the computed Γ_{1} we get $Y_{\text {out }}=-0.348+\mathrm{j} 0.705$. Then $\mathrm{Y}_{\mathrm{L}}=0.115-\mathrm{j} 0.705$. The short-circuited stub must produce $\mathrm{b}=-0.705 \rightarrow \mathrm{x}=1.4184 \rightarrow \Phi_{2}=\operatorname{atan}(\mathrm{x})=54.82^{\circ}$. The 90° line must transform 50 Ohm into $1 /(0.02 \cdot 0.115)=434.78 \mathrm{Ohm}$. We get $Z_{c 1}=\sqrt{50 \cdot 434.78}=147.44 \Omega$.
4) At $f=2.35 \mathrm{GHz}$ the electrical length of the input line becomes: $\Phi_{1}^{\prime}=\Phi_{1} \frac{f}{f_{0}}=135.64^{\circ}$. Then $\Gamma_{1}=1 \angle 88.72^{\circ}$. Entering this value in the S.C. we get $\left|\Gamma_{\text {out }}\right|=0.93$ then oscillation is not possible.
