RF SYSTEMS – End Term test 22th January 2020

Surname & Name
Identification Number
Signature

Exercise 1

The following scheme shows a an amplifier operating at 6.5 GHz (Z_0 =50 Ohm)

The transistors are characterized by the following parameters (Z₀=50 Ω): S₁₁=0.814 \angle -144.78°, S₁₂=0.075 \angle -15.38° S₂₁=2.612 \angle 45.62° S₂₂=0.55 \angle -108.91° NF_{min}=1 dB, Γ_{min} =0.8 \angle 122, r_n=0.26 Note that the transistor is potentially instable with MSG=15.4 dB

The input network is constituted by an assigned PI circuit (C₁=0.6 pF, L=3.82 nH, C₂=0.182 pF), followed by a transmission line with electrical length Φ_S and characteristic impedance Z₀. Note that Γ_{s1} and Γ_s differ only by the phase value.

- 1) The Power Gain (G_P) of the amplifier is required to be 15 dB. Chose a <u>real</u> value of Γ_L in order this requirement is satisfied
- 2) Evaluate Γ_S in order to get the Transducer Gain (G_T) equal to G_P.
- 3) Evaluate Γ_{s1} from the assigned PI network with the electronic Smith Chart. Verify that $|\Gamma_{s}| = |\Gamma_{s1}|$
- 4) Compute the electrical length $\Phi_{\rm S}$ to get the required $\Gamma_{\rm S}$.
- 5) Design the transforming network at output. Note that L network transforms 50 Ω into Γ_{L1} , which can be evaluated from Γ_L being the electrical length of the output line assigned ($\Phi = 90^\circ$). Note: the computed values of the lumped components in the network must be positive!
- 6) Evaluate the noise figure and the input reflection coefficient Γ_{in} of the amplifier

Exercise 2

The following scheme refers to an oscillator working at $f_{osc}=2$ GHz. The S parameters of the transistor are also reported on the figure (defined with respect to $Z_0=50 \Omega$).

- 1) Find the value of Γ_1 (realizable with the assigned network) that determines the maximum of $|\Gamma_{out}|$. Hint: draw various mapping circles of Γ_s with increasing value of $|\Gamma_{out}|$ until the mapping circle does not intersect the unit circle.
- 2) Evaluate the electrical length Φ_1 of the input stub.
- 3) From Γ_{out} evaluate the admittance Y_2 and compute the parameters Φ_2 and Z_{c1} of the output network. Hint: the 90° line transforms the load impedance into a pure resistance; the short-circuited stub add a pure susceptance in parallel to the transformed resistance.
- 4) Assuming about constant the S parameters, verify if the oscillation is still possible at 2.35 GHz

Solutions

Exercise 1

- 1) Draw the circle G_P=15 dB and select the intersection with the real axis. $\Gamma_L=0.389 \ge 180^\circ$.
- 2) To get $G_T=G_P$ we must impose the input matched. Then $\Gamma_S = \Gamma_{in}^* = 0.893 \angle 144.13^\circ$.
- 3) First we must evaluate the normalized susceptance and reactance of the circuit elements:

$$b_1 = \frac{2\pi f_0 C_1}{Y_0} = 1.225, \quad b_2 = \frac{2\pi f_0 C_2}{Y_0} = .3717, \quad x = \frac{2\pi f_0 L}{Z_0} = 3.12$$

We enter the current point in the S.C. as the admittance with g=1 and b=b1. Then we give the following increments: reactance=3.12, susceptance=.3717. We get Γ_{s1} =0.893 \angle 0. Actually $|\Gamma_{s}|$ = $|\Gamma_{s1}|$.

- 4) Store Γ_s . Enter Γ_{s1} . The phase of Delta Gamma divided by 2 is the length $\Phi_s=107.94^{\circ}$
- 5) First evaluate Γ_{L1} by increasing of 180° the phase of Γ_L . $\Gamma_{L1}=0.389 \ge 0^\circ$. Then evaluate b_{out} and x_{out} with the S.C. Note that both of them must be negative to be implemented with the imposed components. We get: $b_{out} = -0.496$, $x_{out} = -1.129$. Then we derive the lumped components:

$$L_{out} = -\frac{1}{2\pi f_0 \cdot b_{out} \cdot Y_0} = 2.47 \text{ nH}, \ C_{out} = -\frac{1}{2\pi f_0 \cdot X_{out} \cdot 50} = 0.434 \text{ pH}$$

6) To get the noise figure we enter Γ_S in the S.C. and ask for the optimum Γ_L . We get NF=3 dB. The input reflection coefficient is zero because we imposed the input matched (and the input network is lossless).

Exercise 2

- 1) Following the suggestion we get $|\Gamma_1|=1 \angle 129.1$ with $|\Gamma_{out}|=1.58$.
- 2) Store Γ_1 . Enter the open circuit (Γ =1). The increment of Delta Gamma Phase divided by 2 is Φ_1 =115.44°.
- 3) With the computed Γ_1 we get Y_{out} =-0.348+j0.705. Then Y_L =0.115-j0.705. The short-circuited stub must produce b=-0.705 $\rightarrow x$ =1.4184 $\rightarrow \Phi_2$ =atan(x)=54.82°. The 90° line must transform 50 Ohm into 1/(0.02·0.115)=434.78 Ohm. We get $Z_{c1} = \sqrt{50.434.78} = 147.44 \Omega$.
- 4) At f=2.35 GHz the electrical length of the input line becomes: $\Phi'_1 = \Phi_1 \frac{f}{f_0} = 135.64^\circ$. Then

 $\Gamma_1=1 \angle 88.72^\circ$. Entering this value in the S.C. we get $|\Gamma_{out}|=0.93$ then oscillation is not possible.