RF SYSTEMS

Written Test of February $\mathbf{2 2}^{\text {th }}, 2017$

Surname \& Name

Identification Number

Signature

Exercise 1

It is known the directivity function of an antenna operating at 300 MHz : $f(\theta)=\frac{25 \cdot \sqrt{5}}{16} \sin ^{4}(\theta) \cos (\theta)$ for $0<\theta<90^{\circ}, f(\theta)=0$ elsewhere.

1) Evaluate the value of θ where f is maximum $\left(\theta_{\max }\right)$. Hint: You can find $\theta_{\max }$ either numerically or analytically, remembering that $(f(x) \cdot g(x))^{\prime}=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)$
2) Evaluate the directivity gain D_{M}. Recall: $\int f^{n}(x) f^{\prime}(x) d x=\frac{f^{n+1}(x)}{n+1}$
3) Evaluate the minimum efficiency of the antenna which determines the gain G equal to 5 dB
4) Assuming that the antenna is used in reception, evaluate the output voltage determined by an incident wave arriving from the direction $\theta_{\text {inc }}=45^{\circ}$ with power density $S_{R}=10^{-8} \mathrm{~W} / \mathrm{m}^{2}$. Assume that the radiation impedance of the antenna is 50Ω and the load Z_{L} connected to the antenna is matched ($Z_{\text {rad }}=Z_{L}{ }^{*}$).

Exercise 2

Consider the following scheme of a receiver operating at 6 GHz (signal band 20 MHz). The block REC represents the demodulator at intermediate frequency (IF), producing the bit streaming in base band (BB). It is characterized by the noise temperature $\mathrm{T}_{\text {rec }}$ (at input).
Assume that the filters eliminate completely the image band (no noise contribution at IF).

1) Evaluate the equivalent noise temperature at the input of the receiver (T_{eq}).
2) Assuming $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=20 \mathrm{~dB}$, what is the minimum signal power at IF allowing a data rate $\mathrm{R}=40$ Mbit/sec?
3) If we want remove the LNA and the second filter, we must improve the mixer in order to get the receiver performances unchanged (i.e. the same $\mathrm{T}_{\text {eq }}$ computed above). Assuming that the new value of the mixer losses is $A_{c}{ }_{c}=3 \mathrm{~dB}$, what is the new value of $\mathrm{T}_{\mathrm{SSB}}$?

Exercise 3

Consider the following matching network operating at 1 GHz :

Imposing the intermediate impedance $\mathrm{Z}=75 \Omega$, evaluate the value of $\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{C}_{1}, \mathrm{C}_{2}$ that determines the input impedance $\mathrm{Z}_{\mathrm{in}}=50 \Omega$. Note: explain clearly the procedure adopted for the computation. Reporting only the final values without any explanation is not accepted

Exercise 4

We want to design the amplifier in the figure operating at 2 GHz , with matching at input $\left(\Gamma_{\text {in }}=0\right)$. It is known that the Match IN network is lossless.
The S parameters of the active device at 2 GHz are given in the following table.

$$
\begin{aligned}
& \mathrm{S}_{11}=0.828 \angle-81.1^{\circ} \\
& \mathrm{S}_{12}=0.076 \angle 33.4^{\circ} \\
& \mathrm{S}_{21}=4.390 \angle 99.8^{\circ} \\
& \mathrm{S}_{22}=0.539 \angle-60.1^{\circ}
\end{aligned}
$$

1) Evaluate Γ_{S} and Γ_{L} in order to get the highest transducer gain compatibly with stability and the matching requirement (note that the Γ_{L} selected must be realizable with the output network assigned)
2) Evaluate the characteristic impedance Z_{c} of the output transmission line.

Solution

Exercise 1

1) To find the angle $\theta_{\max }$ we compute the derivative of $f(\theta)$ and equate to 0 :

$$
\begin{aligned}
& f^{\prime}(\theta)=4 \sin ^{3}(\theta) \cos ^{2}(\theta)-\sin ^{5}(\theta)=\sin ^{3}(\theta)\left[4 \cos ^{2}(\theta)-\sin ^{2}(\theta)\right]= \\
& =\sin ^{3}(\theta)\left[5 \cos ^{2}(\theta)-1\right]=0 \quad \Rightarrow \quad \theta_{\max }=\cos ^{-1}\left(\frac{1}{\sqrt{5}}\right)=63.43^{\circ}
\end{aligned}
$$

2) $D_{M}=4 \pi\left[\int_{0}^{2 \pi} d \varphi \int_{0}^{\pi / 2} f(\theta) \sin \theta d \theta\right]^{-1}=\frac{2 \cdot 16}{25 \cdot \sqrt{5} \int_{0}^{\pi / 2} \sin ^{5}(\theta) \cos (\theta) d \theta}=\frac{2 \cdot 16 \cdot 6}{25 \cdot \sqrt{5} \sin ^{6}\left(\frac{\pi}{2}\right)}=3.43(5.36 \mathrm{~dB})$
3) $G=\eta D_{\text {max }} \Rightarrow \eta=10^{(5.36-5) / 10}=0.921$
4) $A_{e}=\lambda^{2} \frac{G}{4 \pi}=0.251 \mathrm{~m}^{2}, P_{r}=S_{R} A_{e} f\left(45^{\circ}\right)=10^{-8} \cdot 0.251 \cdot 0.6176=1.55 \cdot 10^{-9} \mathrm{~W}$

$$
P_{r}=\frac{1}{8} \frac{\left|V_{\max }\right|^{2}}{50} \Rightarrow\left|V_{\max }\right|=\sqrt{50 \cdot 8 \cdot P_{r}}=0.788 \cdot 10^{-3} \mathrm{~V}
$$

Exercise 2

1) Evaluation of Teq:

$$
\begin{aligned}
& T_{e q}=T_{a}+T_{f 1}+T_{L N A} A_{f 1}+T_{f 2} \frac{A_{f 1}}{G_{L N A}}+T_{S S B} \frac{A_{f 1} A_{f 2}}{G_{L N A}}+T_{\text {rec }} \frac{A_{f 1} A_{f 2} A_{c}}{G_{L N A}}=559.25{ }^{\circ} \mathrm{K} \\
& T_{f 1}=290\left(10^{\frac{A_{f 1}}{10}}-1\right)=75.088^{\circ} \mathrm{K}, T_{f 2}=290\left(10^{\frac{A_{f 2}}{10}}-1\right)=169.62^{\circ} \mathrm{K} \\
& T_{L N A}=290\left(10^{\frac{N F}{10}}-1\right)=169.62^{\circ} \mathrm{K}
\end{aligned}
$$

2) Evaluation of P_{IF} :

$$
\begin{aligned}
& S N R_{s y s}=\frac{P_{r}}{K T_{e q} B}=\left(\frac{E_{b}}{N_{0}}\right) \frac{R}{B}=20+10 \log (40 / 20)=23 \mathrm{~dB} \\
& \mathrm{~K}_{e q} B=1.38 \cdot 10^{-23} \cdot 559.25 \cdot 20 \cdot 10^{6}=1.543 \cdot 10^{-13}(-128.1 \mathrm{dBW}) \\
& P_{r}=S N R_{s y s}+\left.\mathrm{K} T_{e q} B\right|_{d B W}=-105.1 \mathrm{dBW} \\
& P_{I F}=P_{r}-A_{f 1}-A_{f 2}-A_{c}+G_{L N A}=-104.1 \mathrm{dBW}
\end{aligned}
$$

3) Evaluation of T 'ssB:

$$
\begin{aligned}
& T_{e q}^{\prime}=T_{a}+T_{f 1}+T_{S S B}^{\prime} A_{f 1}+T_{r e c} A_{c} A_{f 1}=T_{e q} \\
& T_{S S B}^{\prime}=\frac{T_{e q}-\left(T_{a}+T_{f 1}+T_{r e c} A_{c} A_{f 1}\right)}{A_{f 1}}=105.62^{\circ} \mathrm{K}
\end{aligned}
$$

Exercise 3

For the second network (the closed to the load):
$B_{p 2}=\sqrt{\frac{1}{R_{L}}\left(\frac{1}{Z}-\frac{1}{R_{L}}\right)}=\frac{1}{150}\left[\sqrt{\frac{150}{75}-1}\right]=6.666 \cdot 10^{-3} S, X_{s 2}=Z\left[\sqrt{\frac{R_{L}}{Z}-1}\right]=75 \Omega$
$C_{2}=\frac{B_{p 2}}{2 \pi f_{0}}=1.061 \mathrm{pF}, L_{2}=\frac{X_{\mathrm{s} 2}}{2 \pi f_{0}}=11.94 \mathrm{nH}$
For the first network (the closed to the source):
$B_{p 1}=\sqrt{\frac{1}{Z}\left(\frac{1}{Z_{i n}}-\frac{1}{Z}\right)}=\frac{1}{75}\left[\sqrt{\frac{75}{50}-1}\right]=9.428 \cdot 10^{-3} S, X_{s 1}=Z_{\text {in }}\left[\sqrt{\frac{Z}{Z_{i n}}-1}\right]=35.35 \Omega$
$C_{1}=\frac{B_{p 1}}{2 \pi f_{0}}=1.5 \mathrm{pF}, L_{1}=\frac{X_{s 1}}{2 \pi f_{0}}=5.63 \mathrm{nH}$

Exercise 4

We draw the circle $\mathrm{Gp}=17 \mathrm{~dB}(<\mathrm{MSG}=17.62 \mathrm{~dB})$. Then select one of the points on this circle crossing the horizontal axis: $\Gamma_{\mathrm{L}}=0.195$, to which corresponds $\Gamma_{\mathrm{s}}=\left(\Gamma_{\text {in }}\right)^{*}=0.77 \angle 83.56^{\circ}$. Being the output matched: $\mathrm{GT}_{\mathrm{T}}=\mathrm{Gp}=17 \mathrm{~dB}$.
The impedance Z_{L} corresponding to Γ_{L} is $\mathrm{Zs}=50 \cdot 1.485=72.25 \Omega$. Then $\mathrm{Z}_{\mathrm{c}}=\operatorname{sqrt}(50 \cdot 72.25)=60.93 \Omega$.

