RF SYSTEMS Written Test of June 23, 2021

Surname & Name	
Identification Number	
Signaturo	
Signature	

Exercise 1

A vehicle moving in the *x* direction is initially connected to the mobile network through the base station BS₁. At the position x_A the connection switch to the base station BS₂ (*handover*). The two base stations have equal antennas with gain G_{BS}=5.5 dB and the following directivity function (φ is the azimuthal angle and θ is the elevation angle):

 $f(\theta, \varphi) = \cos^2(\varphi) \quad \text{for } 0 < \theta < \pi/2, \ -\pi/2 < \varphi < \pi/2$ $f(\theta, \varphi) = 0 \quad \text{elsewhere}$

Note that the directivity is constant along θ (the plane in which the vehicle is moving is $\theta=0$).

The transmitted power from BS₁ is $P_{T1}=50W$ and the one from BS₂ is $P_{T2}=20W$. The downlink frequencies are 1.81 GHz (BS₁) and 1.87 GHz (BS₂).

It is known that the handover happens when the signals received by the vehicle from the two base stations have the same power (P_{RH}).

- 1) (Mandatory, 7p) Evaluate the position x_A and the power P_{RH} at the handover. Assume the antenna on the vehicle omni-directional ($f(\phi)=1$), with gain G_A=2dB. Hint: the solution is found by equating at x_A the power P_{r1} received from BS₁ to the power P_{r2} from BS₂. P_{r1} and P_{r2} are computed by means of the Friis equation.
- 2) (4p) Evaluate the directivity gain D and the efficiency η of the antennas used by the base stations. Hint: $\int \cos^2(x) dx = x/2 + \sin(2x)/4$

Exercise 2

Consider the scheme in the figure, which refers to RF front-end of a digital communication system operating at 6.4 GHz with a signal bandwidth B=32 MHz. All the relevant parameters of the system are reported in the scheme (except G_{LNA} to be assessed).

- 1) (Mandatory, 6.5p) Assuming the received power P_r =-70 dBm and the required SNR=28 dB, evaluate the equivalent noise temperature T_{eq} of the RF front-end and the value of G_{LNA}
- 2) (1p) Evaluate the required E_b/N_0 to achieve 100 Mbit/sec at baseband
- 3) (3.5p) If the LNA and the second filter are removed, what is the new value of T_{SSB} for maintaining T_{eq} unchanged?

Exercise 3

We want design a single stage amplifier at 12 GHz using the scheme in the following figure (input and output networks are lossless):

The amplifier must exhibit the transducer gain as high as possible compatibly with the stability requirement and the noise figure not larger than 1.5 dB.

- 1) (Mandatory, 6p) Select a proper value for Γ_s and Γ_L in order to satisfy the above requirements. Specify the value of G_T and the value of Γ_{out} .
- 2) (3p) Assuming a single stub matching network for the output network, draw the scheme of the network and evaluate its parameters.
- 3) (2p) Assuming at input a 2-tone signal, evaluate the maximum input power (Pin) determining at output the level of intermodulation lines 30 dB smaller than the main lines.

Solution

Exercise 1

Using the assigned frequencies: λ_1 =16.57 cm, λ_2 =16.04 cm. The powers received by the vehicle from the two BS are given by:

$$P_{R1} = P_{T_1} \frac{\lambda_1^2}{(4\pi D_1)^2} G_{BS} G_{VH} \cos^2(\theta_1), \quad P_{R2} = P_{T_2} \frac{\lambda_2^2}{(4\pi D_2)^2} G_{BS} G_{VH} \cos^2(\theta_2)$$

Then, imposing $P_{R1}=P_{R2}$ and replacing $\cos(\theta_1) = y_1/D_1$, $\cos(\theta_2) = y_2/D_2$:

$$\left(\frac{D_2}{D_1}\right)^4 = \left(\frac{y_2}{y_1}\right)^2 \frac{\lambda_2^2}{\lambda_1^2} \frac{P_{T_2}}{P_{T_1}} = K^2 \Longrightarrow K = 0.3673$$

The lengths D_1 and D_2 can be expressed as follows:

$$D_1 = \sqrt{(y_1)^2 + (x_A - x_1)^2}, \quad D_2 = \sqrt{(y_2)^2 + (x_2 - x_A)^2}$$

Replacing in the previous equation:

$$\frac{(y_2)^2 + (x_2 - x_A)^2}{(y_1)^2 + (x_A - x_1)^2} = K = 0.3673$$

Finally, the following 2nd degree equation in x_A is obtained: $x_A^2(1-K) + 2x_A(K \cdot x_1 - x_2) + y_2^2 - K \cdot x_1^2 + x_2^2 - K \cdot y_1^2 = 0$

$$0.6327x_A^2 - 10.327x_A + 39.635 = 0$$

Solving, we get the two following solutions: $x_{A1}=10.1506$ Km, $x_{A2}=6.1715$ Km. The first solution must be discarded because > x_2 , The received power at the handover finally results: $P_{r1}=P_{r2}=1.7582e-09$ (-57.55 dBm)

The directivity gain D is expressed by:

$$D = \frac{4\pi}{\int_{0}^{\pi/2} \int_{-\pi/2}^{\pi/2} f(\mathcal{G}, \varphi) \sin(\theta) d\theta d\varphi} = \frac{4\pi}{\int_{0}^{\pi/2} \sin(\theta) d\theta} \int_{-\pi/2}^{\pi/2} \cos^2(\varphi) d\varphi = \frac{4\pi}{\left[1 \cdot \frac{\pi}{2}\right]} = 8$$

From the expression $\eta D=10^{(5.5/10)}$, we get $\eta=0.4435$

Exercise 2

$$\begin{split} A_{fl} &= 1.023, \ A_{f2} &= 1.122 \quad T_{f1} = T_0 \left(10^{A_{f1}/10} - 1 \right) = 6.75^{\circ}K, \ T_{f2} = T_0 \left(10^{A_{f2}/10} - 1 \right) = 35.38^{\circ}K \\ T_{LNA} &= T_0 \left(10^{NF/10} - 1 \right) = 171.3737^{\circ}K, \\ T_{eq} &= T_a + T_{f1} + A_{f1}T_{LNA} + \frac{A_{f1} \left[T_{SSB}A_{f2} + T_{f2} \right]}{G_{LNA}} = 358.8979^{\circ}K \\ G_{LNA} &= \frac{A_{f1} \left[T_{SSB}A_{f2} + T_{f2} \right]}{T_{eq} - \left(T_a + T_{f1} + A_{f1}T_{LNA} \right)} = 12.1173 \quad (10.834 \text{ dB}) \\ \text{To get R=100 Mbit/sec we must have:} \\ E_b / N_0 &= SNR - 10 \log \left(R/B \right) = 28 - 4.95 = 23.05 \text{ dB} \,. \\ \text{Removing the LNA and second filter:} \end{split}$$

$$\begin{split} T_{eq} &= T_a + T_{f1} + A_{f1} T_{SSB} = 358.8979^{\circ} K \\ T_{SSB} &= \frac{1}{A_{f1}} \Big\{ 358.8979 - \Big[T_a + T_{f1} \Big] \Big\} = 197.4733^{\circ} K \end{split}$$

Exercise 3

- 1. Enter the S parameters on the S. C. \rightarrow Device potentially instable with MSG=12.2 dB
- 2. Draw the circle NF=1.5 dB and several circles with Gav<MSG until the one tangent to the noise circle is found: Gav=11.24 dB
- 3. Select Γ s on the tangent point: Γ s=0.55 \angle -164.4
- Imposing the matching at the transistor output the transducer gain is made equal to the available gain. Select on the S.C.: S Param→ Optimum Gamma → Load: G_T=11.24 dB, Γ_L=0.505∠-175.8, NF=1.5 dB
- 5. Check that both Γ s and Γ_L are outside the instability regions (source and load)
- 6. Being the output of transistor matched, if a lossless output network is used, $\Gamma_{out} = 0$.
- 7. Using the S.C. the single-stub network parameters are found: θ =27.45°, b=1.186.