RF SYSTEMS – 1th End term test 24 January 2019

Surname & Name	
Identification Number	
Signature	

Exercise 1

Consider two coupled lines characterized by the even and odd mode characteristic impedances Zce=62.5 Ω and Zco=40 Ω . The length of the lines is *L*=4.5 cm and the relative dielectric constant of the medium is ε_r =2.2 (assume the lines homogeneous). The four ports of the coupled structure are connected to terminations of equal value (R₀). A source with available power Pin=1 W is connected at port 1.

- 1) Determine the value of R_0 for which all the ports are matched ($S_{11}=S_{22}=S_{33}=S_{44}=0$)
- 2) Evaluate the frequency f_0 at which the power delivered to port 3 is maximum
- 3) Evaluate the output power at ports 2, 3, 4 at the frequency f_0
- 4) If the length L is halved, what is the delivered power to port 4 at f_0 ?

Exercise 2

We want realize the LNA with the scheme in the figure (the scattering and noise parameters of the transistor are also reported). The output network (lossless) has been designed, giving the following result: $\phi_1=57.4795^\circ$, $\phi_2=50.1474^\circ$ (the shunt-connected element is an open circuited stub)

- 1) Using the Smith Chart, find the value of Γ_s determining NF=0.5 dB with the largest value of the available power gain G_{AV} .
- 2) Compute Γ_L produced by the output network.
- 3) Compute Γ_{out} and specify what condition is verified at the transistor output.
- 4) What is the transducer gain G_T of the amplifier? Justify the answer
- 5) Design the input network (i.e. evaluate the susceptances B_1 and B_2) producing the required Γ_s .
- 6) What is the value of Γ_0 ? Justify the answer