## RF SYSTEMS – 2<sup>nd</sup> part 30 January 2018

# Surname & Name

### **Identification Number**

#### Signature

Exercise 1

A matching network transforming  $150\Omega$  into  $75\Omega$  at 1GHz must be designed. The following scheme must be used (it is constituted by two cascaded L-shaped networks with lumped components, where the intermediate impedance is set to  $100\Omega$ ).



- 1) Evaluate L1, L2, C1 and C2
- 2) Propose an alternate solution giving the same impedances (100  $\Omega$  and 75 $\Omega$ ), using only two distributed components

#### Exercise 2

The following scheme shows a single stage power amplifier operating at 3 GHz.



The S parameters of the transistors are given as following:  $S_{11}=0.83 \angle 149^{\circ}$ ,  $S_{12}=0.076 \angle 48^{\circ}$ ,  $S_{21}=0.9 \angle 9.3^{\circ}$ ,  $S_{22}=0.62 \angle 164.7^{\circ}$ 

The transistor is pre-matched at input with a lumped network having the following components value:  $C_1=0.877$  pF,  $C_2=3.92$  pF, L=1.31 nH.

- 1) Evaluate  $\Gamma_S$  and the corresponding value of  $\Gamma_L$  that determines the maximum transducer gain  $G_T$
- 2) Compute the value of  $G_T$
- 3) Design the output network imposing the intermediate impedance Z' real (100  $\Omega$ ) and assigning Zc<sub>2</sub>=100  $\Omega$  (evaluate the parameters  $\phi_2$ , C and Zc<sub>1</sub>). Note that the first line is an impedance inverter (approximate ( $\Gamma_L$  to a real number)
- 4) Evaluate the magnitude of the reflection coefficient at output ( $\Gamma_{out}$ ) of the amplifier
- 5) The above scattering parameters are measured at the operating power delivered to the load ( $P_L$ ). The transistor has  $P_{1dB}$ =33 dBm and  $\Delta p$ =9 dB. Knowing that the transistor is operating with 3 dB backoff, evaluate the mean power  $P_L$  delivered to load and the Carrier-to-Intermodulation CI (2-tone signal).

#### Exercise 3

The following scheme refers to an oscillator working at unknown frequency. The S parameters of the transistor are also reported on the figure.



The input line (Zc=75 $\Omega$ , length  $l_1$ , relative dielectric constant  $\varepsilon_r$ =2.2) is open circuited. It is known that  $l_1$ =12.64 mm and  $\Gamma_s$ =-1.

- 1) Compute the oscillation frequency (hint: is the frequency determining  $\Gamma s = -1$ ). Verify that the condition  $|\Gamma_{out}| > 1$  is satisfied.
- 2) Assign a suitable value for  $\Gamma_L$  and verify that all the conditions for starting the oscillation are fulfilled
- 3) Design the output network, i.e. compute the values of  $l_2$  and L (assume  $\varepsilon_r=2.2$ )

# Solutions

(E×1)  $B_{1} = \sqrt{\frac{1}{100} \left(\frac{1}{75} - \frac{1}{100}\right)} = \frac{1}{1732} = T - (1 - \frac{B_{1}}{271}) = 0.92 \text{ pF}$  $X_{1} = \frac{7}{75100} \left( \frac{1}{100} \left( \frac{1}{25} - \frac{1}{100} \right) = 433 = 15 \quad L_{1} = \frac{1}{2\pi \beta} = 6.9 \text{ nH}$  $B_{2} = \sqrt{\left(\frac{1}{100} - \frac{1}{150}\right)^{-1}_{150}} = \frac{1}{212.13} = 5 \quad C_{2} = \frac{B_{2}}{2\pi f_{0}} = 0.25 \text{ pF}$  $X_2 = 153.100$   $\left| \frac{1}{150} \left( \frac{1}{100} - \frac{1}{450} \right) \right| = 70.7 = 52 = \frac{X_2}{2\pi B} = 11.25 \text{ mH}$ with and is buted componente:  $\frac{\frac{1}{10}}{4} \frac{\frac{1}{10}}{4} \frac{\frac{1}{10}}{4} \frac{\frac{1}{10}}{7} \frac{1}{100} \frac{1}{100} = 127.552$   $\frac{1}{100} \frac{1}{7} \frac{1}{100} \frac{1}{100} = 127.552$   $\frac{1}{100} \frac{1}{7} \frac{1}{100} \frac{1}{7} \frac{1}{10} \frac{1$ 75

 $(E \times 2)$ 

1) Using the S.C. we get  $P_s = 0.82 \swarrow -154.4^{\circ}$ 2) (Gr)max is obtained by imposing the conjugate match at the trans output. The optimum Match at the trans output. The optimum Mais obtained with the S.C.:  $M_L = 0.655 \pounds -1799^{\circ}$ GT = 6.25 dB

3) Eci is obtained by imposing the transformation of soon into the real impedance  $R_L = \frac{(1+\Gamma_L)}{1-\Gamma_L} =$ = 125 SID Za= 120. RL = 32.1 SZ The zemaining part of the network is a domical single stub watching water k (all components normalized to 1205, M'= ). With the S.C. We get: \$7 = 35.7°, b=07  $\exists \mathcal{F} = \frac{5.001}{2\pi f} = 0.37 \mu F$ 4) The output is matched, then Pour = u 5)  $P_m = P_{1,16} - B = 30 - 16m$ Bo = <u>CI</u> - Ap - 3 = B GI = 30 dB

(Z X 3)

) To get Is = - 1 the line length must be ho then:  $l_1 = \frac{h_2}{4} = \frac{c}{4\pi f_0 \sqrt{\epsilon_2}}$ we get fo = 4 GHz z) We compute Pour with the S.C. imposing  $\Gamma_{s=} - 1$ :  $M_{sup} = 1.34 \times -71.7^{\circ}$ Then Pout = - 1.95- j? 9 Jean which  $7_{L} = + 0.65 + j7.9 (m_{L} = 0.88 \times 36^{\circ})$ for this value of The we get | Min = ?.1 oscillation DK / 3) Using the S.C. we set:  $\psi_2 = 572^{\circ} = \beta l_2 = \beta l_2 = \beta l_2 = \frac{572.2}{360 f_0 \sqrt{s_2}}$ = 8.03 ww  $b_{L} = -3.6 \implies \frac{1}{\omega_{0}L} = 3.6.002 \implies \omega_{0}L$  $\Rightarrow L = 0.55 \text{ hH}$