Surname \& Name
 Identification Number

Signature

Exercise 1

A matching network transforming 150Ω into 75Ω at 1 GHz must be designed. The following scheme must be used (it is constituted by two cascaded L-shaped networks with lumped components, where the intermediate impedance is set to 100Ω).

1) Evaluate L1, L2, C1 and C2
2) Propose an alternate solution giving the same impedances (100 Ω and 75Ω), using only two distributed components

Exercise 2

The following scheme shows a single stage power amplifier operating at 3 GHz .

The S parameters of the transistors are given as following:
$\mathrm{S}_{11}=0.83 \angle 149^{\circ}, \mathrm{S}_{12}=0.076 \angle 48^{\circ}, \mathrm{S}_{21}=0.9 \angle 9.3^{\circ}, \mathrm{S}_{22}=0.62 \angle 164.7^{\circ}$
The transistor is pre-matched at input with a lumped network having the following components value: $\mathrm{C}_{1}=0.877 \mathrm{pF}, \mathrm{C}_{2}=3.92 \mathrm{pF}, \mathrm{L}=1.31 \mathrm{nH}$.

1) Evaluate Γ_{S} and the corresponding value of Γ_{L} that determines the maximum transducer gain G_{T}
2) Compute the value of G_{T}
3) Design the output network imposing the intermediate impedance Z ' real (100Ω) and assigning $\mathrm{Zc}_{2}=100 \Omega$ (evaluate the parameters ϕ_{2}, C and Zc_{1}). Note that the first line is an impedance inverter (approximate (Γ_{L} to a real number)
4) Evaluate the magnitude of the reflection coefficient at output ($\Gamma_{\text {out }}$) of the amplifier
5) The above scattering parameters are measured at the operating power delivered to the load $\left(\mathrm{P}_{\mathrm{L}}\right)$. The transistor has $\mathrm{P}_{1 \mathrm{~dB}}=33 \mathrm{dBm}$ and $\Delta \mathrm{p}=9 \mathrm{~dB}$. Knowing that the transistor is operating with 3 dB backoff, evaluate the mean power P_{L} delivered to load and the Carrier-toIntermodulation CI (2-tone signal).

Exercise 3

The following scheme refers to an oscillator working at unknown frequency. The S parameters of the transistor are also reported on the figure.

The input line ($\mathrm{Zc}=75 \Omega$, length l_{1}, relative dielectric constant $\varepsilon_{\mathrm{r}}=2.2$) is open circuited. It is known that $l_{1}=12.64 \mathrm{~mm}$ and $\Gamma_{\mathrm{s}}=-1$.

1) Compute the oscillation frequency (hint: is the frequency determining $\Gamma \mathrm{s}=-1$). Verify that the condition $\left|\Gamma_{\text {out }}\right|>1$ is satisfied.
2) Assign a suitable value for Γ_{L} and verify that all the conditions for starting the oscillation are fulfilled
3) Design the output network, i.e. compute the values of l_{2} and L (assume $\varepsilon_{\mathrm{r}}=2.2$)

Solutions
$E \times 1$

$$
\begin{aligned}
& B_{1}=\sqrt{\frac{1}{100}\left(\frac{1}{75}-\frac{1}{100}\right)}=\frac{1}{173.2} \Rightarrow C_{1}=\frac{B_{1}}{2 \pi \rho_{0}}=0.92 \mathrm{pF} \\
& X_{1}=75.100 \sqrt{\frac{1}{100}\left(\frac{1}{75}-\frac{1}{100}\right)}=43.3 \Rightarrow L_{1}=\frac{x_{1}}{2 \pi \rho_{0}}=6.9 \mathrm{nH} \\
& B_{2}=\sqrt{\left(\frac{1}{100}-\frac{1}{150}\right) \frac{1}{150}}=\frac{1}{212.13} \Rightarrow C_{2}=\frac{B_{2}}{2 \pi f_{0}}=0.75 \mathrm{pF} \\
& X_{2}=150.100 \sqrt{\frac{1}{150}\left(\frac{1}{100}-\frac{1}{250}\right)}=70.7 \Rightarrow L_{2}=\frac{X_{2}}{2 \pi \rho}=11.25 \mathrm{nH}
\end{aligned}
$$

with distributed components:

$$
\begin{aligned}
& z_{c 1}=\sqrt{150.100}=127.5 \Omega \\
& z_{c 2}=\sqrt{100.75}=86.6 \Omega
\end{aligned}
$$

1) Using the SC. We get $r_{s}=082 \angle-154.4^{\circ}$
2) $\left(G_{t}\right)_{\text {max }}$ is obtained by in losing the conjugate unteach of the Trans output. The optimum r_{L} is obtained with the S.C.: $r_{L}=0.656 \angle-1799^{\circ}$ $G_{T}=6.25 d B$
3) $Z_{C_{1}}$ is obtained by imposing the transformation of soon into the real impedance $R_{L}=\frac{\left(1+\Gamma_{L}\right)}{1-M_{2}} \stackrel{50}{=}$

$$
=12.5 \Omega \Rightarrow Z_{C 1}=\sqrt{100 \cdot R_{L}}=32.15
$$

The remaining part of the network is a clorsical single stub watching network all components nownalied to loos, $\Gamma_{=1} 0$). With the S.C. We get: $\phi_{2}=35.20, b=07$

$$
\Rightarrow C=\frac{b .0 .01}{2 \pi f}=0.37 \mathrm{rF}
$$

4) The output is matched, then $\Gamma_{\text {out }}=0$
5)

$$
\begin{aligned}
& P_{m}=P_{1}+B-B 0=30 d B m \\
& B_{0}=\frac{C I}{2}-\Delta_{p}-3 \Rightarrow C I=30 d B
\end{aligned}
$$

2×3

1) To get $r_{s}=-1$ The line length must be $\frac{h_{0}}{4}$ then: $l_{1}=\frac{h_{0}}{4}=\frac{c}{4+f_{0} \sqrt{\varepsilon_{2}}}$ we get $f_{0}=4 G H_{2}$
2) We confute Pout with the Sic. imposing $r_{S}=-1: r_{0 u t}=1.34 \boxed{ }-27.7_{-}^{\circ}$ Then Pout $=-1.95-j 2.9$ from which:

$$
z_{L}=+0.65+j 7.9 \quad\left(m_{L}=0.88\left\lfloor 36^{\circ}\right)\right.
$$

for this value of Γ_{L} we get $\left|\Gamma_{i n}\right|=2.1$ oscillation o kI
3) Using the $S C$ we get:

$$
\begin{aligned}
& \phi_{2}=572^{\circ}=\beta l_{2} \Rightarrow l_{2}=\frac{57.2 \cdot c}{360 \cdot f_{0} \sqrt{\varepsilon_{2}}}=\frac{8.03}{\mathrm{~mm}} \\
& b_{L}=-3.6 \Rightarrow \frac{1}{\omega_{0} L}=3.6 .002 \Rightarrow \\
& \Rightarrow L=0.55 \mathrm{nH}
\end{aligned}
$$

