Exercise 1

It is known the directivity function of an antenna operating at 800 MHz :
$f(\theta)=\frac{3 \cdot \sqrt{3}}{2} \sin (\theta) \cos ^{2}(\theta)$ for $0<\theta<90^{\circ}, f(\theta)=0$ elsewhere.

1) Compute the value of θ where f is maximum ($\theta_{\max }$).
2) Compute the directivity gain D_{M}. Recall: $\int \cos ^{2}(x) \cdot \sin ^{2}(x) d x=\frac{x}{8}-\frac{\sin (4 x)}{32}$
3) Evaluate the minimum efficiency of the antenna which determines the gain G equal to 5 dB
4) Assuming the antenna used in transmission with $\mathrm{P}_{\mathrm{T}}=100 \mathrm{~W}$, evaluate the distance from the antenna (along the direction of maximum emission) where the radiated power density S_{R} is 10^{-3} $\mathrm{W} / \mathrm{m}^{2}$. What is the electric field intensity $(\mathrm{V} / \mathrm{m})$ at this distance?

Solution:

1) Derivative of $f(\theta)$ equal to zero:

$$
\frac{d f}{d \theta}=\cos (\theta)-3 \sin ^{2}(\theta) \cos (\theta)=0 \quad \square \quad \theta_{\max }=\sin ^{-1}\left(\sqrt{\frac{1}{3}}\right)=0.6155 \mathrm{rad}
$$

2) D_{M} computation:

$$
\begin{aligned}
& D_{M}=\frac{4 \pi}{\frac{3 \sqrt{3}}{2} \int_{0}^{2 \pi} \int_{0}^{\pi / 2} \sin ^{2}(\theta) \cos ^{2}(\theta) d \varphi d \theta}=\frac{4}{3 \sqrt{3}} \frac{1}{\left[\frac{\theta}{8}-\frac{\sin (4 \theta)}{32}\right]_{0}^{\pi / 2}}= \\
& =\frac{4}{3 \sqrt{3}} \frac{16}{\pi}=3.9 \text { (5.93 dB) }
\end{aligned}
$$

3) $\eta=\frac{G}{D_{M}}=0.806$

$$
S_{R}=\frac{P_{T} G}{4 \pi R^{2}} \Rightarrow R=\sqrt{\frac{100 \cdot 10^{0.5}}{4 \pi 10^{-3}}}=158.63 \mathrm{~m}
$$

4)

$$
E=\frac{1}{R} \sqrt{\frac{Z_{0} \cdot P_{T} \cdot G}{2 \pi}}=\frac{1}{158.63} \sqrt{\frac{377 \cdot 100 \cdot 10^{0.5}}{2 \pi}}=0.87 \mathrm{~V} / \mathrm{m}
$$

Exercise 2
A broadcasting transmitter operates in FM commercial band ($88-108 \mathrm{MHz}$) with $\mathrm{P}_{\mathrm{T}}=1 \mathrm{KW}$. The antenna has the efficiency $\eta=0.9$ and the following directivity function:

$$
f(\theta, \varphi)=1 \quad \text { for } 0<\theta<90^{\circ}, 0<\varphi<360^{\circ}, \quad f(\theta, \varphi)=0 \quad \text { elsewhere }
$$

In the surroundings of the FM station, it is planned to build civil buildings. The current legislation however imposes severe limits for the maximum field in such buildings: $\mathrm{E}_{\max }<6 \mathrm{~V} / \mathrm{m}, \mathrm{S}_{\text {max }}<0.1$ $\mathrm{W} / \mathrm{m}^{2}$ ($\mathrm{S}_{\text {max }}$ represent the maximum power density)

1) Evaluate the gain of the antenna and the emitted ERP power
2) Evaluate the minimum distance from the antenna for which both the above limits are respected

$$
\begin{aligned}
& \text { 1) } D_{M A x}=\frac{4^{2} \pi}{\int_{0}^{\pi / 2} \sin \theta d \theta \cdot 2 \pi}=\frac{2}{[-\cos \theta]_{0}^{\pi / 2}}=2 \\
& G=\eta \cdot \Delta_{\text {MAX }}=1.8(2.55 d B) \\
& E R P=P_{T} \cdot G=1.8 \mathrm{KW} \\
& \text { 2) } d_{1}=\sqrt{\frac{E R P}{4 \pi S_{R}}}=37.85 \mathrm{~m} \\
& d_{2}=\frac{1}{E_{\text {MAX }}} \sqrt{\frac{Z 0 \cdot E R P}{2 \pi}}=54.77 \\
& \quad d_{\text {PAN }}=d_{2}=54.77 \mathrm{~m}
\end{aligned}
$$

Exercise 3

The transmitter $\mathrm{T}\left(\mathrm{P}_{\mathrm{T}}=20 \mathrm{~W}, \mathrm{f}_{0}=4 \mathrm{GHz}\right.$) is located on an aircraft flying parallel to ground at an altitude $\mathrm{H}=10 \mathrm{Km}$. The antenna on T is optimally directed toward the receiving station R on ground and has the gain $\mathrm{G}_{\mathrm{T}}=10 \mathrm{~dB}$.

The antenna at the ground station R is directed along the vertical direction and exhibits the following directivity diagram: $f(\theta, \varphi)=f^{\prime}(\theta) \cdot \cos (\varphi / 2)$ where $f^{\prime}(\theta)$ is shown on the figure ($\mathrm{A}_{1}=$ -10 dB). Note that the range of φ is: $-\pi<\varphi<\pi$. The scheme on the above figure (left) refers to the plane $\varphi=0$.

1) Compute the parameter A_{2} of the directivity diagram in order that the gain of the receiving antenna (G_{R}) is equal to 17 dB . Assume the radiation impedance $\mathrm{Z}_{\mathrm{R}}=50 \Omega$ e the loss resistance $\mathrm{R}_{\mathrm{p}}=10 \Omega$.
2) Compute the 3 dB beamwidth $\Delta \varphi_{3 \alpha в}$ of the antenna in the plane $\theta=0$.
3) Compute the power received by R when the aircraft crosses the positions where θ is equal 10° and 50° (with $\varphi=0$)
4) It is known the sensitivity of the receiver $\mathrm{S}=-90 \mathrm{dBm}$. Evaluate the maximum value of L where the signal is still detected (note that $\theta>50^{\circ}$ for this distance)

Solution:

1) First the directivity gain $D_{\max }$ is computed:
$D_{\max }=\frac{4 \pi}{\int_{-\pi}^{\pi} \int_{0}^{\pi} \sin (\varphi) \sin (\theta) f^{\prime}(\theta) d \varphi d \theta}=\frac{4 \pi}{4\left[\left(1-\cos \left(10^{\circ}\right)\right)+A_{1}\left(\cos \left(10^{\circ}\right)-\cos \left(50^{\circ}\right)\right)+A_{2}\left(1+\cos \left(50^{\circ}\right)\right)\right]}=$
$=\frac{\pi}{0.0494+A_{2} 1.6428}=\frac{G}{\eta}=60.1425$
Where $\eta=Z_{\mathrm{rad}} /\left(\mathrm{Z}_{\mathrm{rad}}+\mathrm{R}_{\mathrm{p}}\right)=0.8333$ and $\mathrm{G}=10 \wedge 1.7=50.1187$
From the above equation it is found $\mathrm{A}_{2}=0.00173$ (-27.6 dB)
2) The directivity in φ is:

$$
f(\bar{\varphi})=\cos \left(\frac{\bar{\varphi}}{2}\right)=0.5 \Rightarrow \bar{\varphi}=120^{\circ}
$$

The 3 dB beamwidth is then $\varphi=2 \bar{\varphi}=240^{\circ}$
3) At i-th crossing the distance L is equal to:
$\mathrm{L}_{\mathrm{i}}=\mathrm{H} / \cos \left(\theta_{\mathrm{i}}\right)$ with θ_{i} equal to 10° and 50°. The received power is obtained from the Friis eqution:

$$
P_{r}=P_{t}+G_{T}+G_{R}-L_{f, i}+A_{i}
$$

For $\theta_{\mathrm{i}}=10^{\circ}, \mathrm{L}_{1}=\mathrm{H} / \cos \left(10^{\circ}\right)=10.154 \mathrm{Km}, \mathrm{L}_{\mathrm{f}, \mathrm{i}}=20 \log \left(4 \pi \mathrm{~L}_{\mathrm{L}} / \lambda\right)=124.61 \mathrm{~dB}$
For $\theta_{\mathrm{i}}=50^{\circ}, \mathrm{L}_{2}=\mathrm{H} / \cos \left(50^{\circ}\right)=15.557 \mathrm{Km}, \mathrm{L}_{\mathrm{f}, \mathrm{i}}=20 \log \left(4 \pi \mathrm{~L}_{2} / \lambda\right)=128.32 \mathrm{~dB}$
Replacing on the Friis equation ($\mathrm{Pt}=43 \mathrm{dBm}, \mathrm{G}_{\mathrm{T}}=10 \mathrm{~dB}, \mathrm{G}_{\mathrm{R}}=17 \mathrm{~dB}$) it has:
$\operatorname{Pr} 1=-64.616 \mathrm{dBm}, \operatorname{Pr} 2=-85.94 \mathrm{dBm}$
4) From the Friis equation:
$P_{r}=P_{t}+G_{T}+G_{R}-L_{f}+A_{2}=-90 \Rightarrow L_{f}=132.4 \mathrm{~dB}$
Then replacing the expression of L_{f} :
$L=\frac{\lambda}{4 \pi} 10^{L_{f} / 20}=24.88 \mathrm{Km}$

Exercise 4
A space probe is sent in orbit around Saturn to take high-quality pictures of the planet surface. The probe has a dish antenna (4 m diameter, aperture efficiency $e_{a}=0.6$) and a transmitter with $P_{T}=30 \mathrm{~W}$ at 10 GHz . The receiving station on Earth employs an antenna with 70 m diameter ($e_{a}=0.65$), connected to the receiver schematically depicted in the following figure.

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{a}}=10^{\circ} \mathrm{K} \\
& \mathrm{NF}_{\mathrm{LNA}}=0.5 \mathrm{~dB} \\
& \mathrm{G}_{\mathrm{LNA}}=10 \mathrm{~dB} \\
& \mathrm{~A}_{\mathrm{f}}=0.5 \mathrm{~dB} \\
& \mathrm{~T}_{\mathrm{rec}}=100^{\circ} \mathrm{K}
\end{aligned} \quad \mathrm{~K}=1.38 \cdot 10^{-23}{ }^{2} \quad .
$$

1) Evaluate the gain of receiving and transmitting antennas
2) The distance Saturn-Earth is $1.43 \cdot 10^{9} \mathrm{Km}$. Compute the received power P_{r} at the antenna output
3) Evaluate the equivalent system temperature ($\mathrm{T}_{\text {sys }}$) of the receiving system
4) Assuming the requested $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=10 \mathrm{~dB}$, evaluate the maximum data rate R allowed by the system
5) If the signal bandwidth B is 0.1 MHz , what is the SR $_{\text {sss }}$?
6)

$$
\begin{aligned}
& \Lambda=3.10^{8} / 10^{10}=0.03 \mathrm{~m} \quad P_{T}=10 \log _{w}(30)=14.77 \mathrm{dBW} \\
& G_{T}=e_{a t}\left(\frac{\pi d_{T}}{\lambda}\right)^{2}=1.053 .10^{5}(50.22 \mathrm{~dB}) \\
& G_{c}=e_{a R}\left(\frac{\pi d z}{\Lambda}\right)^{2}=3.49 \cdot 10^{7}(75.43 \mathrm{~dB})
\end{aligned}
$$

2) $P_{Z}=P_{T}-20 \log \left(\frac{4 \pi \cdot 1.43 \cdot 10^{12}}{0.03}\right)+G_{T}+G_{R}=-155.12 \mathrm{dBW}$
3)

$$
\begin{aligned}
& T_{\text {syst }}=T_{a}+T_{\text {LeA }}+\frac{T_{0}\left(a_{f}-1\right)}{g_{e_{\text {na }}}}+T_{\text {Rec }} \cdot a_{f} / g_{\text {eNd }} \\
& T_{0}=273-200=73^{\circ} \mathrm{K} \quad T_{\text {uNA }}=T_{0}\left(10^{\mathrm{NEFLO}}-1\right)=8.907^{\circ} \mathrm{K} \\
& a_{f}=10 \stackrel{A_{f} / 10}{=} 1,122 \quad T_{f}=T_{0}\left(a_{f}-1\right)=8,907^{\circ} \mathrm{K} \quad g_{p \text { ka }}=10 \\
& T_{\text {mys }}=31.018^{\circ} \mathrm{K}
\end{aligned}
$$

4) $R=\frac{P_{R}}{K \cdot T_{S_{\text {gs }}} \cdot F_{\text {Fp/ }} / 20}=71.82 \mathrm{Kbit} / \mathrm{sec}$
5) $S_{N R}=P_{Z} /\left(K T_{S, S S} \cdot B\right)=8.56 \mathrm{~dB}$
6) $S=10.10^{7}$ bit $T=\frac{S}{R}=1390 \mathrm{sec}$.
