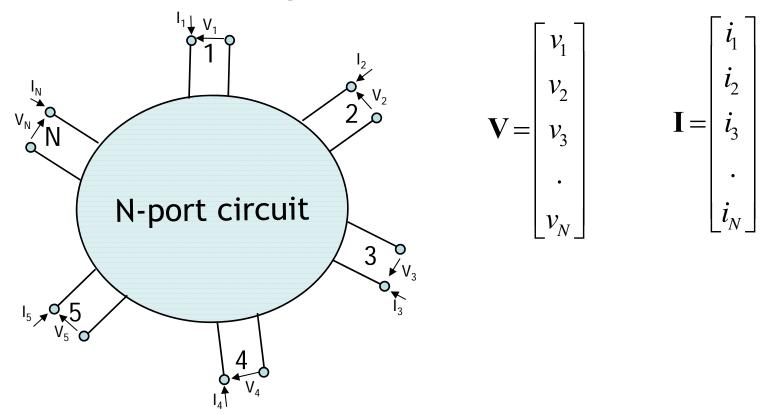
Matrix Characterization of Electrical Networks

Matrix modeling of a n-port linear circuit



Assuming the network linear, the superposition principle allows the evaluation of the voltages at the ports, for a given vector of imposed currents (or vice versa). The matrices Z and Y are then introduced:

$$V = Z \cdot I$$
 $I = Y \cdot V$

Z = Impedance Matrix

Y = Admittance Matrix

Definition of **Z** elements

$$v_{1} = z_{1,1}i_{1} + z_{1,2}i_{2} + z_{1,3}i_{3} + \dots + z_{1,N}i_{N}$$

$$v_{2} = z_{2,1}i_{1} + z_{2,2}i_{2} + z_{2,3}i_{3} + \dots + z_{2,N}i_{N}$$
.....
$$v_{N} = z_{N,1}i_{1} + z_{N,2}i_{2} + z_{N,3}i_{3} + \dots + z_{N,N}i_{N}$$

Independent (impressed) parameters: Currents at the ports

 $z_{i,j}$ Impedance at port *i* with all the others open circuited

 $z_{i,j}$ = Ratio of the voltage at port i e the impressed current at port j with all the ports open circuited.

Definition of Y elements

$$i_{1} = y_{1,1}v_{1} + y_{1,2}v_{2} + y_{1,3}v_{3} + \dots + y_{1,N}v_{N}$$

$$i_{2} = y_{2,1}v_{1} + y_{2,2}v_{2} + y_{2,3}v_{3} + \dots + v_{2,N}v_{N}$$
.....
$$i_{N} = y_{N,1}v_{1} + y_{N,2}v_{2} + y_{N,3}v_{3} + \dots + y_{N,N}v_{N}$$

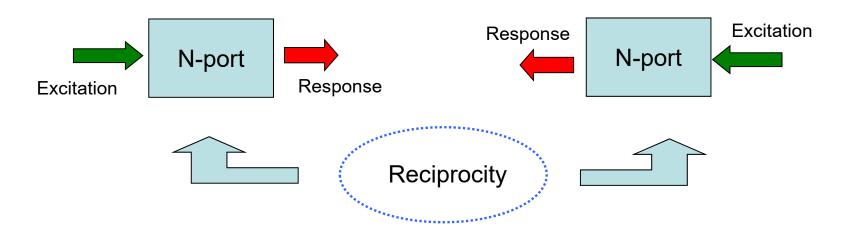
Independent (impressed) parameters: Voltages at the ports

 $y_{i,i}$ Admittance at port *i* with all the others short circuited

 $y_{i,j}$ = Ratio of the current at port i e the impressed voltage at port j with all the ports short circuited.

Properties of Z and Y

1. Reciprocity. Response/Excitation remains the same when the ports are exchanged



For a reciprocal N-port network it has:

$$Z_{i,j}=Z_{j,i}$$
 $Y_{i,j}=Y_{j,i}$

i.e. **Z** and **Y** are symmetric

Properties of Z and Y

2. <u>Passivity</u>: Assuming no sources inside the network, in a passive network the sum of the power flowing through all the ports must be positive:

$$P = \frac{1}{2} \operatorname{Re} \left(V_1 I_1^* + V_2 I_2^* + ... V_N I_N^* \right) \ge 0$$

Note that the sign of V_i and I_i must be taken into account (the sign is positive for a power going into the port). In matrix notation, the above equation becomes:

$$\mathbf{Q}_{\mathbf{Z}} = \mathbf{Z} + \tilde{\mathbf{Z}}^* = Positive \ Defined, \quad \mathbf{Q}_{\mathbf{Y}} = \mathbf{Y} + \tilde{\mathbf{Y}}^* = Positive \ Defined$$

In a *positive defined* matrix the determinant, the eigenvalues and the main diagonal are real and positive.

Properties of Z and Y

3. <u>Lossless</u>: in case of no dissipation inside the network, the overall power at the ports must be 0, then $\mathbf{Q}_Z = \mathbf{Q}_Y = 0$. This determines (for **Z**):

$$z_{i,j} = -\left(z_{j,i}\right)^*$$

If the N-port network is also reciprocal $(z_{i,j}=z_{j,i})$ it turns out that all the element of **Z** must be imaginary.

Note that in case the reciprocity is not verified, the elements of **Z** on the main diagonal must be imaginary, while for the other it has $(z_{i,j}=r_{i,j}+jx_{i,j})$:

$$r_{i,j} = -r_{j,i}, \quad x_{i,j} = x_{j,i}$$

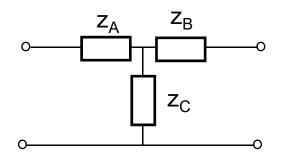
The same holds for Y

2-port network

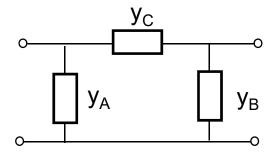
For a lossless network Z and Y are imaginary. If it is also reciprocal:

$$z_{12} = z_{21}, y_{21} = y_{12}$$

Equivalent representation:

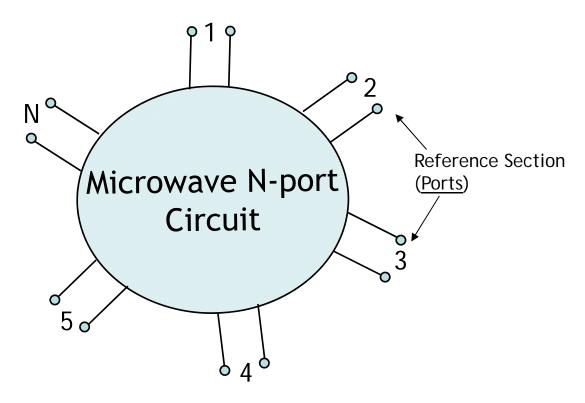


$$z_{11}=z_A+z_C$$
, $z_{22}=z_B+z_C$, $z_{12}=z_{21}=z_C$
 $z_A=z_{11}-z_{12}$, $z_B=z_{22}-z_{12}$, $z_C=z_{12}$,



$$y_{11}=y_A+y_C$$
, $y_{22}=y_B+y_C$, $y_{12}=y_{21}=-y_C$
 $y_A=y_{11}+y_{12}$, $y_B=y_{22}+y_{12}$, $y_C=-y_{12}$,

Microwave Linear Circuits



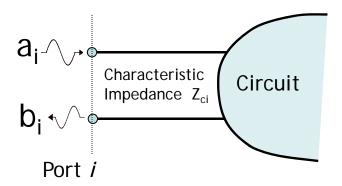
A microwave linear circuit is constituted by the interconnection of lumped and distributed elements. The interaction with the outer is realized through the <u>external ports</u>, which are defined on transmission lines outgoing from the network.

Note that the each port is characterized by a <u>reference section</u>, representing the position on the line where is collocated

Drawbacks of matrices Z e Y

- The direct measurement of the elements of Z and Y would require open or a short circuits, which may be difficult to realize at microwave frequencies
- The placement of a short or an open at the ports of active circuits may damage the active components
- The change of the reference sections requires complex transformations when Z or Y matrices are used
- Voltages and Currents are not always univocally defined in microwave circuits (it happens for TEM modes only)

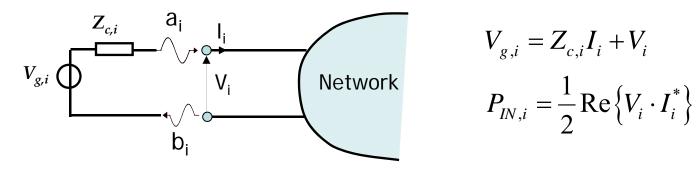
Power Wave definition



(1/2) $|a_i|^2$: Incident power wave = Available power from a source with impedance Z_{ci}

 $(1/2)|b_i|^2$: Reflected power wave = Difference between the available power and the power absorbed by the port (i.e. flowing into the port)

Definition of conventional V and I



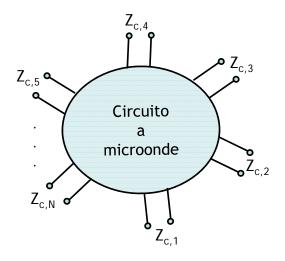
$$V_{g,i} = Z_{c,i}I_i + V_i$$

$$P_{IN,i} = \frac{1}{2}\operatorname{Re}\left\{V_i \cdot I_i^*\right\}$$

$$\begin{aligned} &P_{av,i} = \frac{1}{2} |a_{i}|^{2} = \frac{\left|V_{g,i}\right|^{2}}{8 \cdot \text{Re}\left\{Z_{c,i}\right\}} = \frac{\left|V_{i} + Z_{c,i} \cdot I_{i}\right|^{2}}{8 \cdot \text{Re}\left\{Z_{c,i}\right\}} \implies a_{i} = \frac{V_{i} + Z_{c,i} \cdot I_{i}}{2\sqrt{\text{Re}\left\{Z_{c,i}\right\}}} = I_{i} \frac{Z_{i} + Z_{c,i}}{2\sqrt{\text{Re}\left\{Z_{c,i}\right\}}} \\ &P_{IN,i} = \frac{1}{2} \text{Re}\left\{V_{i} \cdot I_{i}^{*}\right\} = \frac{1}{2} \left(\left|a_{i}\right|^{2} - \left|b_{i}\right|^{2}\right) \implies b_{i} = \frac{V_{i} - Z_{c,i}^{*} \cdot I_{i}}{2\sqrt{\text{Re}\left\{Z_{c,i}\right\}}} = I_{i} \frac{Z_{i} - Z_{c,i}^{*}}{2\sqrt{\text{Re}\left\{Z_{c,i}\right\}}} \end{aligned}$$

$$a_{i} = \frac{I_{i} + Y_{c,i} \cdot V_{i}}{2\sqrt{\operatorname{Re}\left\{Y_{c,i}\right\}}}, \quad b_{i} = -\frac{I_{i} + Y_{c,i}^{*} \cdot V_{i}}{2\sqrt{\operatorname{Re}\left\{Y_{c,i}\right\}}}$$

Generalized Scattering Matrix



For a linear circuit, incident and reflected waves are linearly related:

$$b_1 = s_{11}a_1 + s_{12}a_2 + \dots + s_{1N}a_N$$

$$b_2 = s_{21}a_1 + s_{22}a_2 + \dots + s_{2N}a_N$$

$$b_N = s_{N1}a_1 + s_{N2}a_2 + \dots + s_{NN}a_N$$

In matrix form:

$$\underline{\mathbf{b}} = \underline{\underline{\mathbf{S}}} \cdot \underline{\mathbf{a}}$$

$$\underline{\underline{S}} = \begin{pmatrix} s_{11} & \dots & s_{1N} \\ \vdots & \ddots & \vdots \\ s_{N1} & \dots & s_{NN} \end{pmatrix}$$

Meaning of S parameters

$$s_{ii} = \frac{b_i}{a_i} \bigg|_{a_{k \neq i} = 0}$$

Reflection coefficient at port i when the other ports are connected to their reference impedances Z_{cj} (matched)

$$S_{ij} = \frac{b_i}{a_j} \bigg|_{a_{b+1}=0}$$

<u>Transmission coefficient</u> from port j to port i with the other ports matched. Note that $|s_{ij}|^2$ rappresents the <u>transducer power gain</u> between the two ports

Properties of S Matrix

- \Box For a reciprocal network **S** is symmetric ($s_{ij}=s_{ji}$)
- \Box For a lossless network **S** is unitary $(\mathbf{S} \cdot \widetilde{\mathbf{S}}^* = \mathbf{U})$
- \Box If the reference sections are shifted by d_i the new matrix S' is given by:

 $\mathbf{S}' = \mathbf{\Phi} \cdot \mathbf{S} \cdot \mathbf{\Phi}$ where $\mathbf{\Phi}$ is diagonal matrix with elements $\exp(\mathbf{j}\beta d_i)$

It has:
$$s'_{i,j} = s_{i,j} \cdot e^{-j\beta(d_i+d_j)}$$

Note that d_i is positive with an outward shift of the section

☐ If the reference impedances at the ports are changed from $Z_{c,i}$ to $Z'_{c,i}$ the new matrix S' is given by the following equation:

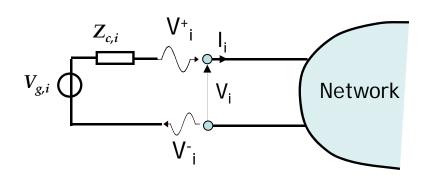
$$\mathbf{S}' = \mathbf{A}^{-1} \cdot \left(\mathbf{S} - \tilde{\mathbf{\Gamma}}^* \right) \cdot \left(\mathbf{U} - \mathbf{\Gamma} \cdot \mathbf{S} \right)^{-1} \tilde{\mathbf{A}}^*$$

with Γ and A diagonal matrices given by:

$$\Gamma = (\mathbf{Z}' - \mathbf{Z}) \cdot (\mathbf{Z}' + \tilde{\mathbf{Z}}^*)^{-1}, \quad \mathbf{A} = diag\{A_{ii}\}, \quad A_{ii} = |1 - \Gamma_{ii}|^{-1} (1 - \Gamma_{ii}^*) (1 - |\Gamma_{ii}|^2)^{1/2}$$

$$\mathbf{Z} = diag\{Z_{c,i}\}, \quad \mathbf{Z}' = diag\{Z'_{c,i}\}$$

Power and Voltages waves



$$egin{aligned} V_i &= V_i^+ + V_i^-, & I_i &= I_i^+ + I_i^- \ V_i^+ &= Z_{c,i}I_i^+, & V_i^- &= -Z_{c,i}I_i^- \end{aligned}$$

Power waves:

$$a_{i} = \frac{V_{i} + Z_{c,i} \cdot I_{i}}{2\sqrt{\text{Re}\{Z_{c,i}\}}}, \quad b_{i} = \frac{V_{i} - Z_{c,i}^{*} \cdot I_{i}}{2\sqrt{\text{Re}\{Z_{c,i}\}}} \qquad \qquad V_{i}^{+} = \frac{V_{i} + Z_{c,i} \cdot I_{i}}{2}, \quad V_{i}^{-} = \frac{V_{i} - Z_{c,i} \cdot I_{i}}{2}$$

Voltage waves:

$$V_i^+ = \frac{V_i + Z_{c,i} \cdot I_i}{2}, \quad V_i^- = \frac{V_i - Z_{c,i} \cdot I_i}{2}$$

Absence of reflected wave:

Conjugate matching

$$Z_i = Z_{c,i}^*$$

Coincide for $Z_{c,i}$ real

Matching

$$Z_i = Z_{c,i}$$

Particular case: real Z_{c.i}

With $Z_{c,i}$ ($Y_{c,i}$) real, the power and voltage waves coincide (unless a constant).

The relationship between S and Z (or Y) simplifies to:

$$\mathbf{S} = (\mathbf{Z}_{N} - \mathbf{U}) \cdot (\mathbf{Z} + \mathbf{U})^{-1}, \quad \mathbf{Z}_{N} = (\mathbf{U} - \mathbf{S})^{-1} \cdot (\mathbf{S} + \mathbf{U})$$
$$\mathbf{S} = (\mathbf{U} - \mathbf{Y}_{N}) \cdot (\mathbf{U} + \mathbf{Y}_{N})^{-1}, \quad \mathbf{Y}_{N} = (\mathbf{U} + \mathbf{S})^{-1} \cdot (\mathbf{U} - \mathbf{S})$$

where $\mathbf{Z}_{\mathbf{N}}$ e $\mathbf{Y}_{\mathbf{N}}$ are normalized matrices defined as:

$$\mathbf{Z}_{\mathbf{N}} = \left[\frac{z_{i,j}}{\sqrt{Z_{c,i} \cdot Z_{c,j}}}\right], \quad \mathbf{Y}_{\mathbf{N}} = \left[\frac{y_{i,j}}{\sqrt{Y_{c,i} \cdot Y_{c,j}}}\right]$$

Note that if $Z_{c,i}=Z_0$ (equal for all the ports): $Z_N(i,j)=Z(j,i)/Z_0$