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A directional coupler is a 4-port network exhibiting:

• All ports matched on the reference load (i.e. S11=S22=S33=S44=0)

• Two pair of ports uncoupled (i.e. the corresponding Si,j parameters are zero). 

Typically the uncoupled ports are (1,3) and (2,4) or (1,4) and (2,3) 



Characteristic Parameters

It is here assumed that the uncoupled ports are (1-4) and (2-3). The S 

parameters the ideal coupler must exhibit are:

S11=S22=S33=S44=0, S14=S41=S23=S32=0.

In this case the ports (1-2), (1-3), (3-4), (2-4) are coupled. 

Let define C (Coupling) as:

C=|S13|
2,   CdB=-20 log(|S13|)

If the network is assumed lossless and reciprocal, the unitary condition 

of the S matrix determines the following relationships:
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Then, exciting the network at port 1 (2), the output power is divided between ports 

3 and 2 (4 and 1) according the factors C and 1-C. No power comes out of port 4 

(3)



Further implications of lossless condition 

(symmetric structure)
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We assume that the network is symmetric:

It can be demonstrated that it is sufficient to impose the matching 

condition to the four ports of a lossless and reciprocal network to get a 

directional coupler

Then 12=34 and 13=24. From the previous condition:

This means that the outputs are in quadrature each other.



Parameters of a real directional coupler

In a real coupler the matching at the ports is not zeros at all the frequencies. It 

is then specified the minimum Return Loss in the operating bandwidth.

The coupling parameter C, it is in general referred to the port with the smallest 

coupling.

Moreover, in a real device a not zero power  arrives to the uncoupled port. To 

characterize this unwanted effect the isolation parameter (I) is introduced:

I=Power to the coupled port/Power to the uncoupled port

For the coupler considered in the previous slides (assuming port 3 that with 

the lowest coupling): 
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Note that for the ideal coupler I is infinite



Use of the directional coupler (1)

Measure of the reflection coefficient
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Use of the directional coupler (2)

Power divider (C=3 dB)

C=3dB

Pin 1 2

3 4
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Ports closed on the 

reference load
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Use of the directional coupler (3)

Power combiner (C=3 dB)
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C=3dB

Vout1
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Use of the directional coupler (4)

Sum and difference of voltages (C=3 dB)
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Use of the directional coupler (5)

Balanced Amplifier
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Coupled TEM lines

When two transmission lines are placed close together, the 

propagation in each line is influenced on the other.  We talk in this case 

of coupled-line propagation.

There are two possible modes of propagation which are called even 

and odd (symmetrical structure). Each mode is characterized by its 

characteristic impedance whose meaning is illustrated in the next slide



Modes in TEM coupled lines

Even mode (Zce) 

Magnetic wall (open)

Electric wall (short)

Odd mode (Zco) 

open

Example:

Coupled coax Even mode

Line (Zce) 

Odd mode

Line (Zco) 
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Symmetry

axis

Zce, Zco

Symmetry

axis



Circuit model of two coupled lines with finite 

length

Zce, Zco

bL

1 2

3 4

Goal: compute the 4-port Z matrix (or Y, or S). 

Hypothesis: equal lines (two symmetry axis)

Evaluation method: matrix eigenvalues



Eigenvalues and Eigenvectors of a matrix

The eigenvalues Sl of a square matrix S are the solutions of the equation:

 det 0Sl− =S U

The eigenvectors xl associated to S represent the solution of the 

homogenous system of equations:

x S xl l l =S

A matrix of order n has n eigenvalues and n eigenvectors (each eigenvectors 

has n elements). The eigenvectors are defined up to a constant.

Properties

If a N-port network is excited with a vectors of currents representing an 

eigenvector of Z, you see the same impedance at all ports, and its value is 

just the eigenvalue. The same holds for all the other matrices (Y, S, …)

If there are symmetry axis in the network, the eigenvalues can be derived by 

on suitably defined circuits (eigencircuits). The eigenvectors are obtained by 

induction (the excitations must determine either an open or a short along the 

symmetry axis). 

Once the eigenvalues and eigenvectors are known, simple equations define 

the elements of the corresponding matrices. 



Example: 2-port network
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12 22

S S

S S

Let assume that the two eigenvectors are known (we have assigned arbitrarily 
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Evaluation of the Eigenvectors

In general there is no way to derive the eigenvectors of a generic N-port 

network. Only is the network is symmetric we can deduct the eigenvectors by 

exploiting the effect produced by the eigenvectors excitation.

Let’s consider for instance the case of a symmetric 2-port (S11=S22). Being the 

network symmetric we can obtain the same reflection coefficient at port 1 and 

port 2 only when the incident waves at the two ports have the same magnitude. 

As a consequence the only possible values for 1 and 2 are 1 and -1:

Symmetric

2-port

Symmetric

2-port

1 1

1

1
ex

+
=
+

Eigenvector 1 (Even):

Symmetric

2-port

Symmetric

2-port

1 -1

1

1
ex

+
=
−

Eigenvector 2 (Odd ):

Ge
Ge Go

Go

11 22 12 21 11 12 11 12 ,       ,       ,      
2 2

e o e o
e os s s s s s s s

G +G G −G
= = = = G = + G = −



If the first eigenvector is considered , two equal excitations (amplitude and 

phase) at the two ports determines, for the network symmetry, an open circuit 

along the symmetry axis. The first eigenvalue is the imput reflection coefficient 

(or impedance or admittance) of the even eigenetwork (one port): 

Eigenetwork 1

(even)

Short circuit

Ge

The second eigenvector consists in two equal but opposite excitations: a short 

circuit is then determined along the symmetry axis. The second eigenvalue can 

be computed from the odd eigenetwork (one port): 

Eigenetwork 2

(odd)

Open circuit

Go

2-port symmetric network (cont.)



Eigenvalues evaluation of 2-coupled lines

Symmetry axis 1

Symmetry axis 2

Exciting the network with an eigenvector, an electric or a 

magnetic wall is obtained along the two symmetry axis. 

With reference to Z matrix, the exciting currents for each 

eigenvector result:
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Evaluation of the eigenvalues using the eigenetwork

Eigenvalue Zl1:

Zl1

/2, Zce OPEN ( )1 cot 2ceZ jZl = − 

Eigenvalue Zl2:

Zl2

/2, Zce SHORT ( )2 tan 2ceZ jZl = 

Eigenvalue Zl3:

Zl3

/2, Zco
OPEN ( )3 cot 2coZ jZl = − 

Eigenvalue Zl4:

Zl4

/2, Zco SHORT ( )4 tan 2coZ jZl = 

OPEN

OPEN

SHORT

SHORT



Evaluation of Z Matrix

From the definition of Z, imposing each eigenvector as excitation, 

the four independent elements of Z are obtained:
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Using Zli, the eigenvalues of the other matrices (Y, S) can be 

obtained. The above formulas can be then used for computing the 

elements of also these matrices 



Expression of Z matrix elements
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Special cases

=bL=180°

The eigenvalues of Z are [0, ∞, 0, ∞], so those of S result: 

Sli= [-1, 1, -1, 1]. The scattering matrix elements are then:

11 12 13 140,   1,   0,   0  S S S S= = − = =

Note that line 2 is completely uncoupled from line 1!

Perfect matching at the  four ports

There is a value of the load Z0 for which the ports are all matched 

(S11=S22=S33=S44=0) independently on bL:

0 = Z  ce coZ Z

Note that the matching at the ports does not imply the absence of 

reflected waves along the two lines. It means that the reflected waves 

are canceled only at the ports

( ) ( ) ( ) ( ) cot 2 ,   tan 2 ,   cot 2 ,   tan 2ce ce co coZ j Z Z Z Zl = −   −  



Derivation of the matching condition

Eigenvalues of S
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There are only two cases where the above condition can be satisfied 

independently on =bL, i.e.: 
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Coupled TEM lines as directional coupler

0 = Z  ce coZ Z

Zce, Zco

bL

1 2

3 4

Using the admissible condition we obtain the match at all port imposing:

This condition also implies that port 4 is uncoupled : 
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The maximum value |S13|
2 defines the coupling:  C=(|S13|

2)max

It is obtained for bL=/2 :
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Variation of frequency

Matching and Isolation are frequency independent and  equal to zero and 

infinity respectively (ideal lossless TEM line).

The coupling varies with the frequency according to the following expression:
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For Cmax<0.1 the variation of C 

is practically independent on 

Cmax. 

Note that the band for 

C/Cmax< 0.5 dB is about 0.44 f0

f0 is the frequency for which bL=/2



Practical Restrictions

They concern mainly the maximum value of Cmax. In fact, increasing Cmax, the 

lines become closer and closer until the practical implementation is no more 

possible with sufficient accuracy. Typically the maximum value of Cmax must be 

lower than 0.1 (CdB=10) 

Example: Design a stripline coupler with C=0.1 with Z0=50 W using the 

following figures reporting the values of 

as a function of S and W (lines separation and width). Frequency: 1 GHz
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Solution:

We draw the line C=0.1 on the first graph and the line Z0=50 on the second graph. 

A point on each of these lines has to be then found, which is characterized by the 

same pair of values (S, W) . 

10 mm

11.18 mm 11.18 mm

0.19565 mm
er=1

Note: If a coupler dimensioned for the requested C but with a different value 

of Z0 is available, impedance transforming networks can be used in place of 

redesigning a new coupler.
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Couplers with quasi-TEM Lines
If quasi-TEM coupled lines are considered (Microstrip), the phase velocity of the 

even and odd modes are not exactly coincident. Strictly speaking, that would 

not allow to apply the model here assumed for the characterization of the 

directional coupler.

In the practice, until the difference between the two velocities is not too large, 

the same phase velocity can be assumed for both modes (equal to the average 

of the actual values), assuming the lines as TEM. There are however some 

differences comparing the performances with the ideal TEM coupler (a perfect 

matching is no more possible) 
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Coupler with lumped couplings
To realize couplers with a large coupling (C<10 dB) structure with lumped 

couplings are used. In planar technology two kinds of such couplers are 

employed, the branch-line and the rat-race.
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Evaluation of the eigenvalues
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Coupling conditions

All ports matched, ports 1-3/2-4 uncoupled:

1 2 3 40,   0S S S Sl l l l+ = + =

S11=0 and S13=S24=0

This condition is actually feasible, giving in fact:

2

0

1 s dB B

Y
=

2 2 2

0c cY Y Y − =

( )

( )

11 1 2 3 4

13 1 2 3 4

1
0

4

1
0

4

S S S S S

S S S S S

l l l l

l l l l

= + + + =

= + − − =



Then, being f12=-/2 → f14=. The parameter bs must be then >1 for having 

S14 negative. By imposing now the requested coupling (|S14|
2=C), we can 

obtain the requested value of bs: 

( ) ( )

( ) ( )
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14 1 2 3 4 1 4 2
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For S12 e S14 we have:

Moreover, the unitary condition of S implies the following relation between 

the phases of S12 and S14:
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Taking into account the first found condition (          
2 2 2

0 c cY Y Y − = ) we

finally obtain the expressions of Y’c e Y’’c:
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Branch-line coupler with C=0.5 (3 dB)

The couplers with C=3 dB are identified with the word Hybrid.

To realize an hybrid of branch-line type the characteristic impedances of the 

lines must be:

( )0 0 0

0.5
1 0.5 35.35 ,   50     50 

0.5
c cZ Z Z Z Z = − = W = = W = W

Practical restrictions

One can easily verify that, with C tending to 0: Z’c→Z0 and Z’’c→∞. In the 

practice, even with con C=0.1 (10 dB) the corresponding value of Z’’c is 

very difficult to realize (Z’’c =3Z0). Usually, C must be between 3 and 6 dB.

Frequency dependence

For this device, both matching and isolation vary with frequency (the 

nominal value is obtained at the frequency where the length of the lines is 

l0/4). Also the coupling depends on f (the max is again at f0). 

The bandwidth for a given value of maximum coupling increases with Cmax; 

Usually, the frequency variation of matching and isolation is more 

pronounced than that of the coupling.



Branch Line: a summary
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Design equations:

S parameters obtained:
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For C=0.5 (3dB), it has (assuming Z0=1/Y0=50W):

Conditions to be imposed:
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Rat-race coupler

cY 
cY 

1 3

2 4

cY 

cY 

0 4l

0 4l
0 4l

03 4l

There is only one symmetry axis (vertical)

It is anyhow possible to still use the eigenvalues method for finding the 

dimensioning equations
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cY  cY 



Conditions to be imposed:
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Design equations:
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For C=0.5 (3dB), we obtain (assuming Z0=1/Y0=50W):
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Parameters dependence on f
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• The bandwidth is larger than that of the branch-line

• With the decreasing of the coupling the bandwidth increases

• The practical feasibility limits the coupling between about 3 and 8 dB



Couplers with lumped elements
In some cases, the practical implementation of planar couplers with C in the 

range 10-15 dB may be difficult using distributed elements.  A possible 

alternative is represented by a structure similar to the branch line but employing 

lumped components (for the most critical elements).

Le consider the following (symmetrical) 4-port configuration, constituted by 

lumped susceptances (also the eigen-networks are shown in the figure):
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Eigenvalues expressions (bi=Bi/Yo):
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Now impose S11=0 and S13=0  (uncoupled ports 1-3):
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Imposing the coupling C=|S14|
2:
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If we assume S12 real, ba
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b
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Example of implementation

We observe that Ba and Bb are always positive, so can be implemented with 

capacitances. Br is instead negative and can be realized with a short circuited 

stub with characteristic impedance Z0.

Assume CdB=10 dB  (C=0.1), f0=945 MHz and Y0=1/50. From the previous 

formulas we get:  ba=1.054, bb=0.3333, br=-1.387.

The capacitances implementing Ba and Bb are given by: Ca=3.55 pF, Cb=1.12 

pF. The susceptance Br is realized with a short circuited stub with Zc=50 W and 

bL=atan(-1/br)=35.78°. The final circuit is shown below together with the 

expressions of S12 and S14
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Frequency response of the lumped coupler
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3-port lossless networks

A 3-port reciprocal lossless network cannot be matched at 

the 3 ports (i.e. S11=S22=S33=0 not possible).

In fact, imposing the unitary of S:

2 2

12 13

2 2 2 2 2

12 23 12 13 23

2 2

13 23
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These conditions are 

incompatible so  it is 

impossible to have 

S11=S22=S33=0



Is it still possible to realize a power splitter 

with a 3-port?

Possible solution: a 3 dB hybrid with the uncoupled 

port closed on a matched load

C=3dB

Pin

Z0

2

4 3
Pout= Pin /2

Pout= Pin /2

Circuito a 3 porte

Porta

disaccoppiata

The 3-port network is lossy 

due to the presence of Z0. 

This resistor however does 

not dissipate power 

because the port 4 is 

uncoupled. Pin is then split 

between ports 2 and 3 

without losses



A 3-port divider: the Wilkinson network 
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Due to the presence of RW the 3-

port network is lossy, so the 

condition S11=S22=S33=0 can be 

imposed

2-port network obtained by closing port 1 with Z0:
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S22=S33 and S23 can be computed thorugh the eigenvalues of this network
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Evaluation of S11

Exciting port 1 with ports 2 and 3 closed with Z0, there is no current through 

RW, so it can be discarded.
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Being 02cZ Z=  also S11=0.

Evaluation of S21= S31

Power entering port 1 is not reflected and there is there is no dissipation in RW. 

So the power is all transferred to ports 2 e 3; for the symmetry, the power 

exiting at each port is the half of Pin:  

2 2

21 31 0.5S S= =

The phase for both parameters is -90°.



Frequency response
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Trasmissione

• The bandwidth for RL=20 dB is about 40% of f0

• Transmission (|S21|=|S31|) is independent on frequency

• Dissipation in RW is zero provided that the load at ports 2 and 3 is the 

same



Microstrip implementation

RW

The very small size of Rw (pseudo 

lumped component) must be 

accounted for. The two output lines 

must be enough close to allow the 

connection of Rw. 

On the other hand is not advisable to have 

the output lines too close each other 

because an unwanted coupling may arise. 

So diverging lines are often used.



Example of derivation of S parameters from 

the eigenvalues of S matrix
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