Amplifier non-linearity

We need to select an amplifier which is able to deliver 100 W (average power, signal peak factor 3 dB) with a gain 10 dB .
Assuming that a 2-tone signal with the same average power produce the same non-linear distortion of the given signal, compute the 3th order Intercept point which determine the Carrier-to-intermodulation (CI) equal to 40 dB

$$
\begin{aligned}
& P_{m}=50 \mathrm{dBm}, \\
& C I=2 I P_{3}-2 P_{m}+6 \Rightarrow \\
& I P_{3}=\frac{C I+2 P_{m}-6}{2}=67 \mathrm{dBm}
\end{aligned}
$$

Assume now the Back-off obtained from the amplifier is 8 dB . What are the corresponding parameters Δ_{p} and $\mathrm{P}_{1 \mathrm{~dB}}$?

$$
\begin{aligned}
& B O=\frac{C I}{2}-\Delta_{p}-3 \Rightarrow \\
& \Delta_{p}=\frac{C I}{2}-B O-3=9 \mathrm{~dB} \\
& P_{1 d B}=I P_{3}-\Delta_{p}=58 \mathrm{dBm} \\
& P_{1 d B}=P_{m}+B O=58 \mathrm{dBm}
\end{aligned}
$$

Dynamic range of an amplifier

Definition:

$$
\begin{aligned}
& D R=P_{\max , d B m}-P_{\min , d B m} \\
& P_{\max , d B m}=\text { Maximum Power determining a given CI (2-tone signal) } \\
& P_{\min , d B m}=\text { Minimum power determining a given SNR (thermal noise) }
\end{aligned}
$$

$P_{\max }$ and $P_{\text {min }}$ represent average power at the amplifier output
$P_{\min }=S N R+\left(K T_{e q} B\right)_{d B m}+G \quad \mathrm{~T}_{e q}$ is the ampifier equivalent temperature $=293 \cdot\left(10^{N F / 10}-1\right)$ G is the amplifier gain

$$
\begin{aligned}
& C I=2 I P_{3}-2 P_{\max }+6 \Rightarrow P_{\max }=\frac{2 I P_{3}-C I+6}{2} \\
& D R=P_{\max }-P_{\min }=I P_{3}-\frac{C I}{2}-\left(K T_{e q} B\right)_{d B m}-G-S N R+3
\end{aligned}
$$

For $I P 3=30 \mathrm{dBm}, \mathrm{SNR}=20 \mathrm{~dB}, \mathrm{Cl}=30 \mathrm{~dB}, \mathrm{G}=20 \mathrm{~dB}, \mathrm{~B}=1 \mathrm{MHz}$:

$$
D R=30-15+116.3-20-20+3=94.3 \mathrm{~dB}
$$

Another possible definition for $\mathrm{P}_{\max }$ is the output mean power which determine the mean intermodulation power equal to the noise power:

$$
P_{\text {int }}=3 P_{\max }-2 I P_{3}-6=\left(K T_{e q} B\right)_{d B m}+G \Rightarrow P_{\max }=\frac{2 I P_{3}+6+\left(K T_{e q} B\right)_{d B m}+G}{3}
$$

DR becomes then:

$$
\begin{aligned}
& D R=P_{\max }-P_{\min }=\frac{2 I P_{3}+6+\left(K T_{e q} B\right)_{d B m}+G}{3}-\left(K T_{e q} B\right)_{d B m}-G-S N R \\
& =\frac{2}{3}\left(I P_{3}-\left(K T_{e q} B\right)_{d B m}-G\right)-S N R+2
\end{aligned}
$$

For the amplifier of the previous case:

$$
D R=\frac{2}{3}(30+116.3-20)-20+2=66.2 \mathrm{~dB}
$$

Terrestrial Link

The above link operates with a 64-QAM signal ($\alpha=0.2$) at $\mathrm{R}=167.9 \mathrm{Mbit} / \mathrm{sec}$.
Transmitting and receiving antennas have the same gain ($G_{A}=38.7 \mathrm{~dB}$).
The link is requested to guarantee operation for 99.9% of time. Taking into account as additional attenuation that produced by meteorological phenomena (rain), it is found out that 10 dB are exceeded for less that 0.01% of time. So 10 dB are added to the free space attenuation:

$$
L_{f}=20 \log \left(\frac{4 \pi L}{\lambda}\right)+10=145.8 \mathrm{~dB}
$$

The RF front-end at the receiving side is the following:

The following parameters are assigned:
Cable attenuation $\mathrm{Ac}=2 \mathrm{~dB}$. Antenna Gain $\mathrm{G}=38.7 \mathrm{~dB}$, Antenna noise temp. $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{K}$ Filter passband attenuation $A f=2 d B$
Gain of LNA G=10 dB, Noise figure of LNA NF=2 dB
S represents the minimum signal power (-73 dBm) at the receiver input for a specified $\mathrm{Eb} / \mathrm{NO}(15 \mathrm{~dB})$.
Compute the value or the transmitted power necessary for satisfying the receiver specs in the worst condition (i.e. maximum link attenuation)-

The bandwidth B of the 64-QAM signal is given by $B=(1+\alpha) R / \log _{2}(64)=33.6 \mathrm{MHz}$.
Evaluation of the receiver equivalent temperature $T_{\text {rec }}$ and $S N R_{\text {rec }}$:

$$
S N R_{\text {rec }}=\frac{S}{K T_{e q} B}=\frac{E}{N_{o}} \frac{R}{B}=15+7=22 \mathrm{~dB}, \quad T_{\text {rec }}=\frac{S}{\left(\frac{E}{N_{o}}\right) R \cdot K}=683.8^{\circ} \mathrm{K}
$$

Evaluation of the system equivalent noise temperature ($\mathrm{T}_{\text {sys }}$):

$$
\begin{aligned}
& A_{c}+A_{f}=10^{0.4}=2.511 \\
& T_{c}+T_{f}=293\left(10^{0.4}-1\right)=443^{\circ} \mathrm{K} \\
& \mathrm{~T}_{L N A}=293\left(10^{0.2}-1\right)=171.4^{\circ} \mathrm{K}
\end{aligned}
$$

$\mathrm{T}_{\text {sys }}$ is then given by:

$$
T_{\text {sys }}=\left(T_{A}+T_{c}+T_{f}\right)+\left(A_{f}+A_{c}\right) T_{L N A}+T_{\text {rec }} \frac{\left(A_{f}+A_{c}\right)}{G_{L N A}}=593+438.38+171.7=1195.1^{\circ} \mathrm{K}
$$

In order to get the imposed Eb/NO at baseband the same SNR or the receiver alone must be verified at the antenna output:

$$
S N R=P_{r}-\left(K T_{s y s} B\right)_{d B m}=22 \mathrm{~dB} \Rightarrow P_{r}=22-92.56=-70.56 \mathrm{dBm}
$$

P_{r} is related to the transmitted power by the Friis equation:

$$
P_{r}=P_{t}-L_{f}+2 G_{A} \Rightarrow P_{t}=P_{r}+L_{f}-2 G_{A}=-70.56+145.8-77.4=-2.16 \mathrm{dBm}
$$

It can be noted that the signal power at the receiver ($\mathrm{P}_{\mathrm{rec}}$) input is equal to $-70.56+7.5=-63.06 \mathrm{dBm}$, well above the receiver sensitivity (this level should be possible with only the noise contribution from the receiver)

