
Available power from a source and conjugate 
matching

The Available power of a source is the 
maximum power the source can deliver 
to a load. 
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Matching and conjugate matching 

Matching (Zin=Zg) and conjugate matching are in general different. 
They coincide only for real source (load) impedance. For instance 
when the source is connected to the load with a transmission line of 
characteristic impedance Zc (real), all the available power is transferred 
to the load if ZL=Zg=Zc

Property: For lossless matching network ( only not dissipative components), 
if the conjugate matching is verified at one section (included input or output), it 
must be verified in any other section. 
As a consequence it is sufficient to impose matching condition only at one 
section (typically at input)

xZ *
xZ



Matching with λ/4 line

Note: a line with λ/4 length represents an 
impedance inverter: Zin

Z0 ZL
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Note:
 The same concept can be applied with reference to 

the admittance.

ZL= RL + jXL

Rg

jX

Z0

λ/4

Zin Z~

 The reactance (or susceptance) can be realized with 
lumped or distributed (stubs) components.
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Single Stub Matching

Stubs (s.c. or o.c.) can be employed for realizing 
the reactances (susceptances).
Assumption: Source matched to the line (GG = Yc)

↓
Matching: Γin = 0 ( yin = 1)

Dimensioning of the stub implementing the susceptance b.
Note
It is possible to design with the same procedure the dual network employing a 

series-connected stub .

Sequence of operations:
 Displacement at Γ= cost. (line d)

yL=
gL+jbL

gG
=1 Yc

d

Γin

jb

A B C

ΓB ΓL

yin = gB+ j(bB+ b) = gG = 1

 Displacement at g= cost. (susceptance b)

 ΓB must be on the circle g= 1

Evaluation of b for transforming ΓB into Γin=0

Procedure
Evaluation of d for transforming ΓL into ΓB on the circle g = 1 .



Single Stub – Example

2βd

ΓB

ΓL
Circle g = gG = 1
Circle |Γ|=|ΓL|

Zc= 50 Ω;  ZG= Zc;  εr = 4;   f0 = 3 GHz;  yL = YL/Yc= 0.25+0.75j

0.25+
+j0.75

gG Yc

d

Γ0

jbx

A B C

YB ΓL

mm 2.4
22

337.0

0

=
⋅

=⇒
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d
rεπ
ππβ 337.07.602 ≅°≅d• Evaluation of d:

• Enter yL on S.C.: 0.728 76LΓ = ∠− °



Single Stub – Example 2

2βd

ΓB

Γin

ΓL

Circle b = bB

Circle g = gG 

Circle |Γ|=|ΓL|

0.25+
+j0.75

gG Yc

d

Γ0

jbx

A B C

YB ΓL

y0 = yB+jbx = 1+j(bx+ 2.12)=1  bx= -2.12

• Dimensioning of the stub in 
short circuit: 

mm 5.328.02 ≅⇒≅ xx LL πβ
c.c.

xLβ2
bx

• Evaluation of bx:

YB=1+j2.12



Double Stub Matching

Source matched to the line  Γin = 0 (yin = 1)

Two stubs separated by a
transmission line of assigned length
d are employed.

yL=
gL+jbL

1
Yc

d

Γin

jb1

A B C

ΓB ΓL

D

jb2

ΓC

Note: Sequence of displacements:
 Displacement at g= const. (susceptance b2)

yin = gB+ j(bB+ b1) = 1  gB =1, (bB+ b1)=0   ΓB must be on the circle g= 1

ΓL is transformed into ΓC through a displacement on the circle g= gL

The displacement with d=const must transform ΓC into a point on the circle g= 1

 Displacement at g= cost. (susceptance b1)
 Displacement at Γ= cost. (line d)



Double Stub Matching - Procedure
ΓC must be at the same time:
 On the circle g= gL (displacement through b2).

Then:
1. The circles g= gL e g= 1 rotated are 

drawn. The intersections between these 
circles are admissible points for ΓC.

3. The circle |Γ| = |ΓC| is drawn and the point 
is rotated of -2βd up to ΓB which must be 
on the circle g= 1.

4. b1 is computed from ΓB Γin.
b1 = 0 - bB = - bB

2. b2 is evaluated from ΓL ΓC.
b2 = bC - bL

2βd

g= 1
rotated

 On the circle g= 1 rotated counterclockwise (toward load) of 2βd (a typical 
choice for d is 3/8 λ0, 2βd=270°).



Double Stub – Example 1

Zc= 50 Ω;  ZG= Yc;  εr = 4;   f0 = 3 GHz;  yL = YL/Yc= 0.25+0.75j
d = 7.5 mm

0.25+
+0.75j

1
Yc

d

Γin

jb1

A B C

ΓB ΓL

D

jb2

ΓC

ΓL

π
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5
3222 0 =⋅=→ d

c
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• Circles g= gL e 
g=1 rotated

π
5
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Cb

CC jy 164.025.0    ,8.1961.0 +=°−∠=Γ
g= 1

rotated

ΓC

[ ] [ ] 59.0ImIm2 −=−=−= LCLC yybbb• Evaluation of di b2:



Double Stub – Example 2

0.25+
+0.75j

gG Yc

d

Γin

jb1

A B C

ΓB ΓL

D

jb2

ΓC

ΓL

g= 1
rotated

ΓC• Circle |Γ| = |ΓC| and negative rotation of 2βd [rad]


Bb

BB jy 540.11    ,8.12761.0 +=°−∠=Γ

540.11 −=−= Bbb• Evaluation of b1:
π

5
3

ΓB

Γin

• Stub b1 in s.c.:     

• Stub b2 in s.c:

( ) mm 6.4     rad 58.0tan 1
1

1
1

11 =⇒=−== −− LbLβϕ

( ) mm 3.8     rad 04.1tan 2
1

2
1

22 =⇒=−== −− LbLβϕ



Double Stub – Notes

 It is possible also the dual topology, with the stubs connected in series .

 For a given value of d, there is a
forbidden region which represents the
values of ΓL that cannot be matched by
the network.
In this region, the circles g= gL and g= 1
rotated do not intersect. With d = 3/8 λ0
the forbidden region is in the interior of
the circle g=2. 2βd

g= gG
rotated



Frequency dependence of matching

 It is advisable to verify how |Γin| changes with frequency (the matching specs 
are generally given in a band centered at f0) 

 However, matching depends on the relative bandwidth Bn (=B/f0). At 
microwave frequencies, small values of Bn (few %), correspond to relevant 
values of absolute bandwidth

 For this reason, in case of narrow band (less than 1-2%), it is no necessary to 
take into account the frequency dependence

 On the other hand, when the Bn is not small or the matching level (|Γin|) in the 
band is very small, the design of the matching network becomes a not easy 
task. In practice, being analytical techniques not available nor convenient, the 
design is based on numerical optimization of the components parameters 
values

 In general, an increase of the number of components in the matching network 
is requested with the increase of the  bandwidth (for a given matching level). 
However, the improvement of matching gets smaller and smaller with the 
increase of the components number



Broadband matching: a special case
When source and load to match are both resistive, it is possible to broaden the 
matching bandwidth using several cascaded sections of  transmission lines with 
length λ0/4 (commensurate transformer):

RL

R0
ZCN

Γin

ZC(N-1)ZC(N-2)ZC1

Imposing that the first N-1 derivatives of |Γin(ω)| vanish at f0 we have: 
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For dimensioning the network, it is first selected the number of sections to 
be cascaded (N). Then assigning n=0 in the above equation ZC1 is evaluated 
(Zc(0)=R0). The other unknowns (ZC(k)) are obtained by applying recursively 
the above expression.

λ0/4λ0/4λ0/4λ0/4



Example
We have: RL=100 Ω, R0=50Ω. With N=3 the following results are obtained: 
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|Γin| computed with a 
CAD software:

500 600 700 800 900 1000 1100 1200 1300 1400 1500
Frequency (MHz)

-80

-70

-60

-50

-40

-30

-20

-10

0

DB(|S(1,1)|)
Schematic 1
DB(|S(2,2)|)
Schematic 1

One Section

Three Section



Matching of Antennas

 In the operation band the real part of the impedance seen at the electrical 
port of an antenna (radiation impedance) is about equal to the reference 
impedance (50 Ω) 

 The imaginary part of Z may be different from 0 even at the center 
frequency and then it causes a certain degree of mismatch in the 
operation band of the antenna

 The use of a matching network then allows to improve noticeably the 
radiation efficiency in the operative antenna band

 The simplest network is represented by a single stub in series (or parallel) 
to the antenna port, dimensioned for zeroing the imaginary part of Z (or 
Y) in the center frequency

 Analytical procedures for the design can be used only in the vary simple 
cases (single frequency matching). Numerical optimization is generally  
used to take into account the frequency behavior of the matching  



Optimization of electrical network

Goal: Given a network with specific topology, find the values of the
components parameters so that the network response meets one (or
more) desired objectives

Definitions

• Objective function: mathematical representation of the desired objectives.
The closer is the response of the network to the objectives , the smaller
is the value of the objective function

• Search Algorithm: define the search procedure (typically iterative) of the 
optimum result (= the parameters values for which the objective 
function is equal to zero)



General Scheme

Circuit
Initialization

Network 
Analysis

Objective function
evaluation

Object. Funct.
=0?

Search of new
parameters values End

NO YES



Objective Function

Network Function: H(fi, pj)
fi: f1, f2, …fM = Frequency analysis
pj: p1, p2, …pN = Network parameters

The frequency points must be defined at the beginning, together with
the corresponding values that the network function must present
(Hd(fi)).
p1…pn represent the network parameters to be optimized (they must
be initialized at the beginning of the procedure)

Least-Square function: ( ) ( ) 2
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Multiple Objective Functions
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Examples of multiple objective functions



Optimization Algoritms

Define the procedure for the selection of the “next point” during the
search of the optimum.
Note that the “optimum”, from a mathematical point of view, is
represented by the absolute minimum of the objective function in the n-
dimensional space of the unknown network parameters

Classification
 Random search: the next point is obtained by attempts, by assigning randomly

the values of the unknowns (the limits of the n-dimensional space must be
however specified). A large number of OF evaluations is requested, but the
search is little influenced by local minima of the OF.

 Determinist Algorithms: are based on the analytical search of the minimum of
the OF in the n-dimensional space of the unknowns; can be classified in:
• Derivative-based algorithms (Newton, Quasi-Newton, Gauss-Newton)
• “pattern-search” algorithms, not requesting the use of the derivatives

(simplex, genetic, simulated annealing)
They are in general more accurate and faster of the previous ones, but are very
sensitive to local minima (so the final result is much dependent on the initial
assignments of the unknowns )



Comments

 Initalization: the final result of the optimization procedure is in general
strongly affected by the initial values assigned to the unknowns; it is
always convenient to get analytically the starting point (for instance,
through the synthesis at the center frequency)

 “Divide and Conquer”: The higher is the overall number of unknowns,
the lower is the probability of finding the optimum. It is convenient, if
possible, to subdivide the original (large) problem into a set of smaller
sub-problems to be optimized. The solution of the sub-problems are
then used as starting point for the optimization of the big problem

 Algoritms: the random-type algorithms are useful when the initial point
is not enough good. They in fact make it more likely to skip the local
minima, at expense of many evaluations of the OF. When the solution
approaches a good region (small values of the OF) it is convenient to
switch to a deterministic algorithm to increase the computation speed
and accuracy



Example: matching of a patch antenna 

1480 1530 1580 1630 1680 1730 1780 1810
Frequency (MHz)

Ammettenza di Radiazione

-0.02

-0.01

0

0.01

0.02

0.03

1656.3 MHz
-0.01018

1656.3 MHz
0.02

Re(Y(1,1))
Patch Antenna
Im(Y(1,1))
Patch Antenna

Parte Reale

Parte Immaginaria

Banda

Operation band: 1580-1750 MHz
In band Return Loss: > 20 dB

1480 1530 1580 1630 1680 1730 1780 1810
Frequency (MHz)

-30

-25

-20

-15

-10

-5

0

Without match

With a shunt stub (B=0.01018 S)

1480 1530 1580 1630 1680 1730 1780 1810
Frequency (MHz)

-30

-25

-20

-15

-10

-5

0

TLOC
ID=TL1
Z0=50 Ohm
EL=27 Deg
F0=1656 MHz

1

SUBCKT
ID=S1
NET="Patch Antenna"

PORT
P=1
Z=50 Ohm

1 0.01018tan 26.98
0.02SLβ −  = = ° 

 



3 Elements network

Initially synthesized as double-stub:
FI1=34.05°, FI2=26.57, FI=135°

TLSC
ID=TL1
Z0=50 Ohm
EL=34.05 Deg
F0=1656 MHz

PORT
P=1
Z=50 Ohm

1

SUBCKT
ID=S2
NET="Patch Antenna"

TLSC
ID=TL5
Z0=50 Ohm
EL=26.57 Deg
F0=1656 MHz

TLIN
ID=TL3
Z0=50 Ohm
EL=135 Deg
F0=1656 MHz

1480 1530 1580 1630 1680 1730 1780 1810
Frequency (MHz)

-30

-25

-20

-15

-10

-5

0
DB(|S(1,1)|)
Double Stub
DB(|S(1,1)|)
Single Stub

1480 1530 1580 1630 1680 1730 1780 1810
Frequency (MHz)

-30

-25

-20

-15

-10

-5

0
DB(|S(1,1)|)
Double Stub
DB(|S(1,1)|)
Double Stub_optimized

Optimized network:
FI1=89.91°, FI2=72.47, FI=105.3°



Impedance Transformation

Goal: given ZL e Zgoal find the network parameters for which Zin =Zgoal

Rete di
Trasformazione

Zin (Γin)

ZL  (ΓL)

Zg  (Γg)

Vg,

Conjugate matching  * *,goal g goal gZ Z= Γ = Γ

Usually the elements of the network are lossless (no power lost in the
transformation)



Lumped-element network  (1)

1
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Xs e BP are obtained by solving the previous system:
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Example

Zin = Rin + jXin ZL =0.5+j1

Xs

Bp

( )

( )

1

1 1.2899(0.31)

1 1 2.2247 ( 0.2247)

L in

p L L L

s L L in
L

G R

B G G B

X G G X
G

⋅ <

= ± − − =

 = ± − + = − 

1 0.4 - 0.8,        1 1            L in
L

Y j Z j
Z

= = = +



Smith chart solution

1. Draw the circle g=GL/G0
2. Draw the circle r=Rin/R0
3. Input YL/G0 and store
4. Select as current point the 

intersection of the two circles
5. bp (normalized) is found in the 

DeltaY tab
6. Store the current point
7. Input Zin
8. xs (normalized) is foubd in the 

DeltaZ tab
9. Denormalize xs and bp

x

x

bp=0.31

xs=-0.22



Lumped-element network (2)

Xs e BP are obtained by solving the previous system :
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( )
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1

s L in L L

in
p L in L in
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X R G R X

GB R G R B
R

= ± − −

 = ± − + 
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Condition :

1L inR G <
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Example: conjugate matching

( )

( )

1

1 0.5 ( 1.5)

1 1 3 ( 1)

L g

s L L L

p L L in
L

R G

X R R X

B R R B
R

⋅ <

= ± − − = − −

 = ± − + = − − 

Bg

ZL = RL+jXL

Xs

Bp

Yg = Gg + jBg

Gg
RL

XL

Yin

* 1- 2 in gY Y j= =

0.5 1               1 2L GZ j Y j= + = +



ZL
Yin=(YG)*

xs=-0.5
bp=-1

Smith chart solution

1. Draw the circle r=RL/R0
2. Draw the circle g=Gin/G0
3. Input ZL/R0 and store
4. Select as current point the 

intersection of the two circles
5. Xs (normalized) is found in the 

DeltaZ tab
6. Store the current point
7. Input Yin
8. bp (normalized) is found in the 

DeltaY tab
9. Denormalize xs and bp



Π−Network

Being a further element available (with respect to the L-Networks) it is possible 
to assign one of the shunt components (B1 o B2)

B2

Bp

YL = GL + jBLB1

Xs
Z2 =1/(YL + jB2)

{ }2Re 1inG Z <

Xs e B1 are obtained with 
the formulas of network (2)

Yin = Gin + jBin

Yin = Gin + jBin B2

Bp

B1

Xs

Y2 = Gin + jBin - jB1

YL = GL + jBL { }2Re 1 1LY G <

Xs e B2 are obtained with 
the formulas of network (1)

The T-network can be designed in a similar way 



Increase the matching bandwidth

If the impedances ZL and ZG are real, the matching bandwidth is increased by 
using several L-networks as shown in the following picture:

RL

Xs1

Bp1 Bp Bp

Xs2
Xs3

RG

Zin=RG
Zin=RA Zin=RB

RG>RA>RB>RL

The formulas seen previously are used for the network design (with XL, 
Xin=0). To verify the actual frequency variation of the matching, the 
network elements must be implemented with real components (capacitors 
and/or inductors or stubs)



Example: synthesis + optimization

Problem
A load is constitued by capacitor (1.5 pF) in series with a resistance of 150 
Ohm. Design a lumped elements network for matching this load to 50 
Ohm in the band 600-1100 MHz with at least 24 dB of return loss

First step: the synthesis
A cascade of three L-matching networks is used. The load is first resonated 
at the center band frequency by means of an inductor, then the 150 Ohm 
load is transformed into 50 Ohm  with Rs1=120Ω and Rs2=75Ω:

150 Ω

Xs1

Bp1 Bp2
Bp3

Xs2
Xs3

50 Ω

75Ω 120 Ω50Ω

LS 1.5 pF



150 Ω

Ls1

Cp1 Cp2 Cp3

Ls2
Ls3

50 Ω

LS 1.5 pF
Synthesized Network

Ls1=6.62
Cp1=1.7653

Ls2=10.88
Cp2=1.209

Ls3=11.23
Cp3=0.6241

LS=23.37

Computed parameters:

Initial (synthesis):
Ls1=7.219
Cp1=2.952

Ls2=20.58
Cp2=1.441

Ls3=8.26
Cp3=0.4535

LS=29.61

Optimized:

550 750 950 115
Frequency (MHz)

p  

-100

-80

-60

-40

-20

0

DB(|S(1,1)|)
Match
DB(|S(1,1)|)
Match_optimized



Replace lumped elements with stubs (1)

Approximate equivalence:
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Equivalent network

Zc1

Yc1

Zc2 Zc3 Zc4

Yc2 Yc3

150 Ω50 Ω

1.5 pF

Assigned lengths:
βls=20° at f0=850 MHz with εr=2 
 ls=13.86 mm

Computed Zc:
Zc1=110.49, Zc2=314.98, Zc3=126.42, 
Zc4=453.19

Computed Yc:
Yc1=0.0452, Yc2=0.0221, Yc3=0.0067



Optimized response

550 650 750 850 950 1050 1150
Frequency (MHz)

-30

-27.5

-25

-22.5

-20

-17.5

-15

-12.5

-10

DB(|S(1,1)|)
Equivalent_optimized
DB(|S(1,1)|)
Equivalent_initial

Zc1=113.1
Zc2=321.1
Zc3=63.63
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Another distribuited solution
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