
Transmission lines:
wave propagation
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A transmission line is a physical structure with the cross-
section (x-y plane) of definite shape and the developing 
indefinitely along the normal direction (z).
At each coordinate z the voltage V(z) and the current I(z) are 
represented as a combination of  waves propagating along 
the positive and negative direction of z:
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Physical parameters of the 
line
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R, L, C, G, are the physical parameters of a transmission line. They depend
on the geometry of the transmission line and on the materials used for the
conductors and dielectric medium .

Through the physical parameters and the Kirckoff laws the Telegraphist
Equations can be derived, whose solution is the voltage (current) wave
propagating along the line:
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Meaning of propagation 
constant γ

Given γ=α+jβ, it has:
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• Attenuation constant α: it defines the rate of reduction
(in space) of the wave amplitude. It is measured in
Neper/m or dB/m (1Np = 8.686 dB)

• Phase constant β: it is the rate of variation of the
phase of the wave along the z coordinate (for t=cost).
It is related to the wavelength and to radian frequency:
β=2π/λ0=ω/ν (ν represents the phase velocity
determined by the medium). β is measured in rad/m
(or °/m).



Characteristic impedance

• In general there are two waves in a transmission line, 
one propagating toward positive z and the other toward 
negative z

• The amplitude of the two waves depend on the 
impedance terminating the line

• There is a particular value of this impedance for which 
there is only the wave in positive z direction

• This impedance depends on the line and it is called 
Characteristic Impedance (Zc). It is a real number for 
sufficiently high frequencies (>10 MHz)  



Secondary Parameters

• Characteristic Impedance (Zc): it is defined as the input impedance
of a line with infinite length (i.e. there is only the wave propagating
along the positive z direction)

• Propagation constant γ=α+jβ

Formulas relating physical and secondary parameters:
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These relations are valid for ω>> R/L, G/C; transmission lines used at
microwave frequencies always satisfy these conditions



Voltage and current on the 
line
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v+, i+: Incident waves v-, i-: Reflected waves

The sign of the reflected wave of voltage is the same of the incident
wave; the sign of reflected wave of current is instead opposite to that of
the incident wave. In any case (incident or reflected), the ratio between
the wave of voltage and the wave of current is equal to Zc in
magnitude. A reflected wave is produced by a discontinuity in the
transmission line structure (as for instance the termination with a load).
The reflected wave is eliminated by assigning ZL equal ZC.



Reflection Coefficient

2
2 2 20 0

0 0
0 0

( )

zj z j
j z j z

j z

Reflected Wavez
Incident wave

V e V e e e
V e V

β π
β β λ

β

− + − +
+ +

+ − +

Γ = =

= = = Γ = Γ

Properties of Γ(z) with α=0:

 The magnitude does not depend on z (it is constant along the line)

 The phase is periodic in z (period equal to λ/2)

 The magnitude is always less than 1 with a passive load (the reflected 
power must be less than the incident one).



|V(z)| as a function of z
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The magnitude of V is periodic (same period of Γ) with maxima and 
minima given by:

The Voltage Standing Wave Ratio (VSWR) is defined as the ratio of 
these voltages:
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= 1 for perfect matched line (Γ=0)

= ∞ for completely mismatched line      
(Γ=1)



There is a biunivocal relationship between the reflection coefficient and
the impedance (normalized to Zc) seen along the line (in the load
direction):

Inverse relation:

Impedance along the line
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Impedance as a function of 
the load
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Particular cases (stubs):

ZL= 0 (short circuit) 

ZL= ∝ (open circuit)
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Stub as a circuit component
At high frequencies it is difficult to realize lumped components like inductors 
and capacitors. It is much easier to use stubs which realize the same 
reactance (susceptance) of the lumped component: 
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Note: The equivalence is correct at fixed frequency. When the frequency 
varies the two components behavior is greatly different (lumped: monotonic, 
distributed: periodic)



Example
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Xlump(f0)= Xdist(f0)= 10 Ω β0L=45°, Zc=10 Ω
Xlump(f)=10.(f/f0),  Xdist(f)=10.tan(45°.f/f0)



Transmission Lines Classification

 TEM Lines (Transverse Electric 
Magnetic)

• Coaxial

• Stripline

 non-TEM Lines

• Rectangular waveguide

• Circular  waveguide

• Fin-line

quasi_TEM Lines

•Microstrip

•Suspended Stripline

•Inverted Stripline

•Coplanar Lines



TEM Lines
• They are constituted by two (at least) independent conductors (a

voltage can be applied among them), embedded in a homogeneous
medium

• Electric and magnetic fields of the propagating wave are orthogonal
each other and do not have components in the direction of
propagation

• A TEM transmission line is characterized by:

– A univocal and frequency independent characteristic impedance

– A constant phase velocity lower than or equal to the light velocity 
c:

with εr relative dielectric constant of the medium.
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non-TEM Lines
• The electromagnetic field of a generic transmission line can assume specific 

configurations called modes. The modes are characterized by a minimum 
frequency (cutoff frequency), below of which they cannot propagate. The 
mode with the smallest cutoff frequency is called dominant mode and it is the 
most used in the practice. For line supporting TEM mode the cutoff frequency 
on the dominant mode (also called principal mode) is zero 

• Non-TEM lines are constituted by a single hollow conductor having a section of 
arbitrary shape, generally called waveguide

• The modes in non-TEM lines are generally classified in:

• TE modes: the electric field has no components in the propagation 
direction

• TM modes: the magnetic field has no components in the propagation 
direction

• The characteristic impedance of non-TEM mode is not univocally defined

• Also voltage and current are not univocally defined



quasi-TEM Lines
• These lines consist of two (or more) conductors, surrounded by a non 

homogeneous medium

• As a consequence there is at least one component of E or H field in 
the direction of wave propagation. To difference of non-TEM modes, 
the dominant mode of quasi-TEM lines has the cutoff frequency equal 
to zero 

• The rigorous study of this kind of lines is rather complex; has been 
then developed an approximate (much easier to compute) model, 
based on the concept of equivalent TEM line. 

• The equivalent TEM model of a quasi-TEM line differs from a ideal 
TEM line in the fact that the characteristic impedance and the phase 
velocity depend on the frequency



Attenuation in transmission lines 

Power along a matched line (positive z direction):
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The definition of α then results:
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2 Carried power
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Sources of attenuation in transmission lines
• Attenuation αJ due to losses in the conductors

• Attenuation αD due to losses in the medium (dielectric)

The overall attenuation α is the sum of the above contributes:

Attenuation in the conductors αJ

• It is caused by the finite conductivity of the conductor material employed. In TEM
lines αJ increases with frequency as the square root of f (skin effect).

• The actual conductivity of a material depends, other that its physical properties,
also on the surface roughness determined by the fabrication process adopted.
Without a suitable processing of the surfaces (polishing, lapping and plating), the
degradation of conductivity due to the surface roughness may be even less 50 %
of the ideal value

J Dα α α= +



Attenuation in the dielectric medium αD

• In a real dielectric medium under sinusoidal excitation, some energy must be
supplied for aligning the elementary dipoles of the material along the electric
field direction. As a consequence the dielectric constant of the medium
become a complex number

• A parameter called tanδ is introduced for characterizing dielectric losses,
which represents the ratio between the imaginary and real part of the
dielectric constant. This parameter is practically independent on the
frequency (at microwave frequencies).

• Expressions of αD as function of tanδ:
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General expression of Zc and α for
TEM lines

General definition of the characteristic impedance of a TEM line:
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Fz = Form Factor of the line (depends on the line geometry)

Attenuation of a TEM line:
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High order modes in TEM lines

• Also in TEM lines may exist propagating waves with 
components of E or H in the propagating direction 
(higher order modes)

• This modes are characterized by their cutoff frequency 
and can propagate only if the frequency is higher than 
this

• In practical application it is requested that only one mode 
can propagate (the one with the lowest cutoff frequency)

• TEM line must be dimensioned in order that the first non-
TEM mode is above the maximum operating frequency



Coaxial Line
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Coaxial Line dimensioning
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Given Zc: 

Zc=50 Ω for r2/r1 ≅ 2.3 in air

Single-mode propagation up to fmax: 
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Other TEM lines

Parallel Plates Stripline

Slabline Bi-wires



q≅1   (a>>t)





quasi-TEM Lines

A quasi-TEM line is obtained when a inhomogeneous medium is used in a TEM
line. As a consequence the electromagnetic field is no more transverse with
respect the direction of propagation.
Strictly speaking it is no possible in this case to define uniquely the voltages
and currents. In the practice the quasi-TEM approximation is introduced.
This consists in assuming an equivalent homogeneous medium characterized
by an effective dielectric constant εr,eff, defined as:

Cm: Capacitance p.u.l. of non-homogenous line
C0: Capacitance p.u.l. of the line with εr=1 (air  

everywhere)

Note that εr,eff is in general a function of the frequency. Also Zc e vf are 
then functions of frequency and can be expressed as:
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The most important quasi-TEM line in practical applications is the
microstrip. It belongs to the category of planar structures.

hwεr

t Dielettric

Conductor

• h substrate thickness
• w strip width
• εr relative dielectric constant of substrate
• t metallic thickness

Microstrip



Formulas for microstrip

Quasi-static (t=0):
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Finite metallic thickness:
For taking into account the finite value of t, an effective strip width 
(We) is introduced:
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A simple model for introducing the frequency variation in εr,eff is given 
by:
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CAD tool for evaluating Zc



Graphic representation of Γ

Γ is a complex number in the polar
plane:

•
|Γ|

Φ

For the properties of Γ, assuming the
line terminated with a passive load,
the point in the polar plane must be
within the circle with unit radius
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Graphic representation of Γ

The curve in the polar plane
representing the reflection coefficient on
a lossless line terminated with a passive
load is a circle with radius equal to
|Γ|. The phase changes by 2π with a
variation of z of λ/2

|Γ|
abcd

Characteristic points:

Matched line Γ =0 ( centre of the chart)
Open circuit Γ =1 (a)
Short circuit Γ =-1 (d)
Maximum of voltage (b) (Γ real and positive)
Minimum of voltage (c) (Γ real and negative)



Smith Chart

• On the polar plane of Γ the curves representing the locus of
points where the real (or imaginary) part of zn=Z/Zc is constant
are defined by:

• These curves are circles, whose center and radius depend on r
(or x). The Smith Chart is the graphic representation of such
circles. It allows to solve graphically several problems related to
the transmission lines used in microwave circuits.
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Angle of Γ (it is measured in 
degrees or in L/λ0)
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Admittance representation of 
the Smith Chart
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The diametrically opposite point presents the inverse impedance 
(i.e. the admittance) with respect the original point. As a 
consequence, the Smith Chart can be used for representing either 
impedances or admittances



Smith Chart
Moving at Γ=const
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Displacement on a lossless line:

Movement on a circle with constant radius

NOTE:   Γ (z) is a periodic function of z (d) with period λ/2
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Displacement:
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zL = rL + jxL

jx

zin = rL + j(xL + x)

Displacement at r costant

zL = rL + jxL

r

zin = (rL + r) + jxL

Displacement at x costant

Smith Chart
Displacement at r (or x) constant
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yL = gL + jbLjb

yin = gL + j(bL + b)

Displacement at g=const

yL = gL + jbLg

yin = (gL + g) + 
jbL

Displacement at b=const

Smith Chart
Displacement at g (or b) constant
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Smith Chart
Example of graphical solution
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