RF SYSTEMS

$1^{\text {th }}$ February 2017

Surname \& Name

Identification Number

Signature

Exercise 1

The scheme in the figure represents the RF front-end of a receiver operating at 12 GHz . The two LNAs are separated by a transmission line 5 m long (attenuation $\alpha=0.1 \mathrm{~dB} / \mathrm{m}$). The filter is tuned at the center frequency of the receiver (12 GHz) with 10 MHz passband and 1 dB attenuation in passband; the attenuation in the stopband at the image frequency is $\mathrm{A}_{\mathrm{IM}}=30 \mathrm{~dB}$. The other parameters are reported below.

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{K} \\
& \mathrm{G}_{\mathrm{RF} 1}=10 \mathrm{~dB}, \mathrm{NF} 1=1 \mathrm{~dB} \\
& \mathrm{~A}_{0}=1 \mathrm{~dB}, \mathrm{~A}_{\mathrm{IM}}=30 \mathrm{~dB} \\
& \mathrm{G}_{\mathrm{RF} 2}=15 \mathrm{~dB}, \mathrm{NF} 2=2 \mathrm{~dB} \\
& \mathrm{~A}_{\mathrm{c}}=6 \mathrm{~dB}, \mathrm{~T}_{\mathrm{sSB}}=350^{\circ} \mathrm{K}
\end{aligned}
$$

a) Assuming the IF frequency equal to 140 MHz and the local oscillator frequency ($\mathrm{f}_{\mathrm{L} O}$) above the signal band, where is located the image band?
b) The elements inside the dashed box are connected in cascade. They can be replaced by an equivalent amplifier with $\mathrm{GrF}_{\mathrm{rf} \text { eq }}, \mathrm{NF}_{\text {eq }}$. Evaluate these parameters (assume $\mathrm{G}_{\mathrm{a}}=\mathrm{G}_{\mathrm{T}}$ for all the elements. Hint: the transmission line operates as a dissipative attenuator the noise figure of which is equal to its attenuation).
c) Draw the equivalent scheme for the evaluation of the noise temperature
d) Evaluate the equivalent noise temperature T_{eq} at the input of the front-end

Exercise 2

The transmitter operates at 6 GHz with a transmitted power $\mathrm{P}_{\mathrm{T}}=10 \mathrm{dBm}$. The receiver is located 25 Km apart from the transmitter. The two antennas are equal, optimally pointed and exhibit $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{R}}=25 \mathrm{~dB}$ with directivity function $f(\theta)=\cos ^{4}(\theta)$. A QAM signal with band $\mathrm{B}=10 \mathrm{MHz}$ is employed and the receiver is characterized by $E_{B} / N_{0}=15 \mathrm{~dB}$ and $T_{\text {sys }}=500^{\circ} \mathrm{K}$ (System Noise Temperature).

1) Discarding $S_{R I}$, evaluate the $S N R_{s y s}$ at the input of the receiver and the maximum allowed data rate R.
2) Consider now $S_{R F}=5 \cdot 10^{-12} \mathrm{~W} / \mathrm{m}^{2}$. It represents the power density of a wave incident at the receiving antenna with $\theta=45^{\circ}$. Assuming this signal as an interference noise with power $P_{N I}$, the overall noise at the receiver input becomes $K T_{\text {sys }} B+P_{N I}$.
a) Evaluate the power P_{NI}.
b) Evaluate the new transmitted power from T that determines the same $S N R_{\text {sys }}$ in absence of the interfering signal.

Exercise 3

The following scheme shows a single stage low noise amplifier operating at 12 GHz

The transistor is characterized by the following parameters $\left(\mathrm{Z}_{0}=50 \Omega\right)$:
$\mathrm{S}_{11}=0.569 \angle 78.2^{\circ}, \mathrm{S}_{12}=0.1 \angle-58.5^{\circ} \mathrm{S}_{21}=3.226 \angle-52.1^{\circ} \quad \mathrm{S}_{22}=0.132 \angle 120.7^{\circ}$
$\mathrm{NF}_{\min }=0.51 \mathrm{~dB} \quad \Gamma_{\min }=0.358 \angle-137.2 \quad \mathrm{r}_{\mathrm{n}}=0.12$
The amplifier must be designed for $\mathrm{NF}=0.8 \mathrm{~dB}$ (the transducer gain must be maximized compatibly with the NF imposed).

1) Evaluate the values of $\Gamma_{\mathrm{s}}, \Gamma_{\mathrm{L}}$ in order to fit the requirements
2) Design the two transforming networks.
3) What is the output reflection coefficient $\left(\Gamma_{\mathrm{o}}\right)$ of the amplifier?

Exercise 4

The following scheme refers to an oscillator working at fosc $=425 \mathrm{MHz}$. The S parameters of the transistor are also reported on the figure.

1) Imposing $\left|\Gamma_{\text {out }}\right|=1.3$ compute the values of Γ_{S} and Γ_{L} determining the start of oscillation
2) Evaluate the values of L producing the requested value of $\Gamma \mathrm{s}$
3) Check the conditions for the start-up of oscillation
4) Chose a suitable topology and design the output network

Exercise 1

a) It has $f_{i m}-f_{o l}=f_{I F}$ and $f_{o l}-f_{R F}=f_{I F}$. then $f_{i m}=f_{R F}+2 f_{I F}=12.28 \mathrm{GHz}$
b) The transmission line is equivalent to an attenuator with $\mathrm{NF}_{\mathrm{L}}=\mathrm{A}=0.1 .5=0.5 \mathrm{~dB}$ and gain $\mathrm{GL}_{\mathrm{L}}=-0.5$ dB . The overall gain (available) is then $\mathrm{G}_{\mathrm{a}}=\mathrm{G}_{\mathrm{RF1}}+\mathrm{G}_{\mathrm{L}}+\mathrm{G}_{\mathrm{RF} 2}=24.5 \mathrm{~dB}$. The transducer gain is equal to G_{a} being the output of LNA2 matched: $\mathrm{G}_{\mathrm{eq}}=24.5 \mathrm{~dB}$. For the overall noise figure:
$N F_{e q}=N F_{1}+\frac{N F_{L}-1}{G_{R F 1}}+\frac{N F_{2}-1}{G_{R F 1} G_{L}}=1.33(1.26 \mathrm{~dB})$
c) Considering both the RF and the image channels it has:

With $\mathrm{T}_{\mathrm{RF}, \mathrm{eq}}=290\left(10^{\mathrm{NFeq} / 10}-1\right)=95.7^{\circ} \mathrm{K}, \quad \mathrm{T}_{\mathrm{F}}=290\left(10^{\mathrm{A} 0 / 10}-1\right)=75.09{ }^{\circ} \mathrm{K}$
d) $T_{\text {eq }}$ at the input of the receiver is evaluated as:
$T_{e q}=T_{a}+T_{R F, e q}+\frac{T_{f}}{G_{e q}}+T_{S S B} \frac{A_{0}}{G_{e q}}+\left(T_{a}+T_{R F, e q}\right) \frac{A_{0}}{A_{I M}}=247.84{ }^{\circ} \mathrm{K}$

Exercise 2

The $S N R_{s y s}$ is defined as $S N R_{\text {sys }}=\frac{P_{r}}{K T_{\text {sys }} B}=\left(\frac{E_{b}}{N_{0}}\right)\left(\frac{R}{B}\right)$, where Pr is obtained from the Friis equation: $P_{r}=P_{t}\left(\frac{\lambda}{4 \pi L}\right)^{2} G_{T} \cdot G_{R}$ with $\lambda=3 \cdot 10^{8} / 6 \cdot 10^{9}=0.05 \mathrm{~m}$. Replacing we get Pr :
$\operatorname{Pr}=10+25+25-10 \log \left(3.95 \cdot 10^{13}\right)=-76 \mathrm{dBm}\left(2.5119 \cdot 10^{-11} \mathrm{~W}\right)$.
$S N R_{\text {sys }}$ is then obtained: $S N R_{\text {sys }}=-76-30-10 \log \left(1.38 \cdot 10^{-23} \cdot 500 \cdot 10^{7}\right)=25.6 \mathrm{~dB}$
We can compute the data rate R from the first equation:
$R=B \frac{S N R_{\text {sys }}}{\left(E_{b} / N_{0}\right)}=10 \cdot 10^{2.56-1.5}=114.8 \mathrm{Mbit} / \mathrm{s}$
The power received from the interference is given by $P_{N I}=A_{e} S_{R I} f\left(45^{\circ}\right)=S_{R I} G_{R} \frac{\lambda^{2}}{4 \pi} \cos ^{4}\left(45^{\circ}\right)=7.86 \cdot 10^{-14} \mathrm{~W}$
The noise power from the receiver is $K T_{\text {sys }} B=6.9 \cdot 10^{-14} \mathrm{~W}$. Then, in order to maintain the $S N R_{\text {sys }}$ unchanged we must have:
$S N R_{s y s}=\frac{P_{r}^{\prime}}{P_{N I}+K T_{s y s} B}=\frac{P_{r}}{K T_{s y s} B} \Rightarrow \frac{P_{r}^{\prime}}{P_{r}}=1+\frac{P_{N I}}{K T_{s y s} B}=2.139$
The transmitted P_{t}^{\prime} power must increase of the same amount, then:
$P_{t}^{\prime}=P_{r}\left(1+\frac{P_{N I}}{K T_{\text {sys }} B}\right)=10 \cdot 2.139=21.39 \mathrm{~mW}(13.3 \mathrm{dBm})$

Exercise 3

Inserting the S parameters in the e-Smith Chart we discover that the transistor is unconditionally stable with $\mathrm{G}_{\mathrm{T} \max }=12.788, \quad \Gamma_{\mathrm{s}, \text { opt }}=0.74 \angle-81.4, \Gamma_{\mathrm{L}, \text { opt }}=0.51 \angle-155.2$.

1) We draw the circle with $\mathrm{NF}=0.8 \mathrm{~dB}$ on the S . C. Then, in order to find the value of Γ_{s} determining the maximum available gain compatible with the assigned NF, we draw some circles with $\mathrm{Ga}=\operatorname{cost}\left(<\mathrm{G}_{\mathrm{max}}\right)$ and look for the one about tangent to the NF circle:

We found $\mathrm{Ga}=11.96 \mathrm{~dB}$. The tangent point gives $\Gamma_{\mathrm{s}}=0.44 \angle-97.9^{\circ}$. In order to get $\mathrm{Ga}=\mathrm{G}_{\text {t }}$ we impose conjugate matching at the output of the transistor getting from the S.C.: $\Gamma_{\mathrm{L}}=\left(\Gamma_{\mathrm{out}}\right)^{*}=0.311 \angle-135^{\circ}$.
2) Input network: we move on the circle with $|\Gamma|=\left|\Gamma_{\mathrm{s}}\right|$ toward the load up to the intersection with the real axis $\rightarrow \Phi_{\mathrm{A}}=48.9^{\circ}$. The impedance seen in this point is $\mathrm{Z}=2.571 \cdot 50=128.55 \Omega$. The characteristic impedance Zc of the landa/4 transformer is the given by $\mathrm{Zc}=\operatorname{sqrt}(128.55 \cdot 50)=80.17 \Omega$.
Output network: draw the circle $g=1$ rotated by 270° toward the source. Set the current point to Γ_{L} and store in memory. Draw the circle $g=\operatorname{cost}$ passing for Γ_{L} and select one intersection between the two circles ($\Gamma=0.161 \angle-170.76^{\circ}$). The value of imaginary part of DeltaY with the sign reversed gives $\mathrm{b} 2=0.594$. Give an increment to the current point Γ by $+270^{\circ}$; the new current point has $\mathrm{y}=1+\mathrm{jb} 3 \rightarrow \mathrm{~b} 3=-0.325$.
3) Being the transistor output in conjugate matching and the output network lossless also the amplifier output is matched, i.e. $\Gamma_{0}=0$.

Exercise 4

Inserting the scattering parameter into the S.C. we discover the device potentially instable and the suitable for an oscillator.

1) Draw the mapping circle for $\mid \Gamma$ out $\mid=1.3$ and select one of the intersection with the unit circle: $\Gamma \mathrm{s}=1 \angle 132.31^{\circ}$. The corresponding reactance results Xs=0.442 $50=22.1 \Omega$. Evaluate Γ out $=1.3 \angle-$ $10.4 \rightarrow$ Zout $=-5.21-\mathrm{j} 3.53$. The assign $\mathrm{Z}_{\mathrm{L}}=1.7+\mathrm{j} 3.52$. Using the $\mathrm{S} . \mathrm{C}$. we enter this value as current point and compute $|\Gamma \mathrm{in}|=1.79$, so the oscillation start up is guaranteed.
2) We have at $f_{o s c}=425 \mathrm{MHz}: \quad X_{s}=\omega_{o s c} L=22.1$. Replacing $\omega_{o s c}=2 \pi \cdot 425 \mathrm{MHz}$ we get $\mathrm{L}=8.28 \mathrm{nH}$.
3) Using a single stub network: $\Phi=58.75^{\circ}, \mathrm{b}=-2.73$.
