RF SYSTEMS 1th February 2017

Surname & Name	
Identification Number	
Signature	

Exercise 1

The scheme in the figure represents the RF front-end of a receiver operating at 12 GHz. The two LNAs are separated by a transmission line 5 m long (attenuation α =0.1 dB/m). The filter is tuned at the center frequency of the receiver (12 GHz) with 10 MHz passband and 1 dB attenuation in passband; the attenuation in the stopband at the image frequency is A_{IM}=30 dB. The other parameters are reported below.

- a) Assuming the IF frequency equal to 140 MHz and the local oscillator frequency (f_{LO}) above the signal band, where is located the image band?
- b) The elements inside the dashed box are connected in cascade. They can be replaced by an equivalent amplifier with G_{RF,eq}, NF_{eq}. Evaluate these parameters (assume G_a=G_T for all the elements. Hint: the transmission line operates as a dissipative attenuator the noise figure of which is equal to its attenuation).
- c) Draw the equivalent scheme for the evaluation of the noise temperature
- d) Evaluate the equivalent noise temperature T_{eq} at the input of the front-end

The transmitter operates at 6 GHz with a transmitted power $P_T=10$ dBm. The receiver is located 25 Km apart from the transmitter. The two antennas are equal, optimally pointed and exhibit $G_T=G_R=25$ dB with directivity function $f(\theta)=cos^4(\theta)$. A QAM signal with band B=10 MHz is employed and the receiver is characterized by $E_B/N_0=15$ dB and $T_{sys}=500$ °K (System Noise Temperature).

- 1) Discarding S_{RI} , evaluate the SNR_{sys} at the input of the receiver and the maximum allowed data rate R.
- 2) Consider now $S_{RI}=5.10^{-12}$ W/m². It represents the power density of a wave incident at the receiving antenna with $\theta = 45^{\circ}$. Assuming this signal as an interference noise with power P_{NI} , the overall noise at the receiver input becomes $KT_{sys}B + P_{NI}$.

a) Evaluate the power P_{NI} .

b) Evaluate the new transmitted power from T that determines the same SNR_{sys} in absence of the interfering signal.

The following scheme shows a single stage low noise amplifier operating at12 GHz

The transistor is characterized by the following parameters (Z₀=50 Ω): S₁₁=0.569 \angle 78.2°, S₁₂=0.1 \angle -58.5° S₂₁=3.226 \angle -52.1° S₂₂=0.132 \angle 120.7° NF_{min}=0.51 dB Γ _{min}=0.358 \angle -137.2 r_n=0.12

The amplifier must be designed for NF=0.8 dB (the transducer gain must be maximized compatibly with the NF imposed).

- 1) Evaluate the values of Γ_s , Γ_L in order to fit the requirements
- 2) Design the two transforming networks.
- 3) What is the output reflection coefficient (Γ_0) of the amplifier?

The following scheme refers to an oscillator working at f_{osc} =425 MHz. The S parameters of the transistor are also reported on the figure.

- 1) Imposing $|\Gamma_{out}|=1.3$ compute the values of Γ_s and Γ_L determining the start of oscillation
- 2) Evaluate the values of L producing the requested value of Γ_s
- 3) Check the conditions for the start-up of oscillation
- 4) Chose a suitable topology and design the output network

Solution

Exercise 1

a) It has f_{im} - f_{ol} = f_{IF} and f_{ol} - f_{RF} = f_{IF} . then f_{im} = f_{RF} + $2f_{IF}$ = 12.28 GHz

b) The transmission line is equivalent to an attenuator with NF_L=A=0.1^{.5}=0.5 dB and gain G_L=-0.5 dB. The overall gain (available) is then $G_a=G_{RF1}+G_L+G_{RF2}=24.5$ dB. The transducer gain is equal to G_a being the output of LNA2 matched: $G_{eq}=24.5$ dB. For the overall noise figure:

$$NF_{eq} = NF_1 + \frac{NF_L - 1}{G_{RF1}} + \frac{NF_2 - 1}{G_{RF1}G_L} = 1.33 \ (1.26 \text{ dB})$$

c) Considering both the RF and the image channels it has:

With $T_{RF,eq}=290(10^{NFeq/10}-1)=95.7$ °K, $T_f=290(10^{A0/10}-1)=75.09$ °K

d) T_{eq} at the input of the receiver is evaluated as:

$$T_{eq} = T_a + T_{RF,eq} + \frac{T_f}{G_{eq}} + T_{SSB} \frac{A_0}{G_{eq}} + \left(T_a + T_{RF,eq}\right) \frac{A_0}{A_{IM}} = 247.84 \text{ }^{\circ}\text{K}$$

The *SNR*_{sys} is defined as $SNR_{sys} = \frac{P_r}{KT_{sys}B} = \left(\frac{E_b}{N_0}\right) \left(\frac{R}{B}\right)$, where Pr is obtained from the Friis

equation: $P_r = P_t \left(\frac{\lambda}{4\pi L}\right)^2 G_T \cdot G_R$ with $\lambda = 3.10^8 / 6.10^9 = 0.05$ m. Replacing we get Pr: Pr=10+25+25-10log(3.95.10^{13})=-76 dBm (2.5119.10^{-11} W).

*SNR*_{sys} is then obtained: *SNR*_{sys} =-76-30-10 log $(1.38 \cdot 10^{-23} \cdot 500 \cdot 10^7)$ =25.6 dB We can compute the data rate R from the first equation:

$$R = B \frac{SNR_{sys}}{(E_b/N_0)} = 10.10^{2.56-1.5} = 114.8 \text{ Mbit/s}$$

The power received from the interference is given by

$$P_{NI} = A_e S_{RI} f(45^\circ) = S_{RI} G_R \frac{\lambda^2}{4\pi} \cos^4(45^\circ) = 7.86 \cdot 10^{-14} \text{ W}$$

The noise power from the receiver is $KT_{sys}B=6.9\cdot10^{-14}$ W. Then, in order to maintain the SNR_{sys} unchanged we must have:

$$SNR_{sys} = \frac{P_r'}{P_{NI} + KT_{sys}B} = \frac{P_r}{KT_{sys}B} \Longrightarrow \frac{P_r'}{P_r} = 1 + \frac{P_{NI}}{KT_{sys}B} = 2.139$$

The transmitted P'_t power must increase of the same amount, then:

$$P'_{t} = P_{r} \left(1 + \frac{P_{NI}}{KT_{sys}B} \right) = 10 \cdot 2.139 = 21.39 \text{ mW} (13.3 \text{ dBm})$$

Inserting the S parameters in the e-Smith Chart we discover that the transistor is unconditionally stable with $G_{Tmax}=12.788$, $\Gamma_{S,opt}=0.74 \angle -81.4$, $\Gamma_{L,opt}=0.51 \angle -155.2$.

1) We draw the circle with NF=0.8 dB on the S. C. Then, in order to find the value of Γ_s determining the maximum available gain compatible with the assigned NF, we draw some circles with Ga=cost (< G_{Tmax}) and look for the one about tangent to the NF circle:

We found Ga=11.96 dB. The tangent point gives $\Gamma_s=0.44 \angle -97.9^\circ$. In order to get Ga=G_T we impose conjugate matching at the output of the transistor getting from the S.C.: $\Gamma_L = (\Gamma_{out})^* = 0.311 \angle -135^\circ$. 2) Input network: we move on the circle with $|\Gamma| = |\Gamma_s|$ toward the load up to the intersection with the real axis $\rightarrow \Phi_A = 48.9^\circ$. The impedance seen in this point is Z=2.571 \cdot 50=128.55 Ω . The characteristic impedance Zc of the landa/4 transformer is the given by Zc=sqrt(128.55 \cdot 50)=80.17 Ω . Output network: draw the circle g=1 rotated by 270° toward the source. Set the current point to Γ_L and store in memory. Draw the circle g=cost passing for Γ_L and select one intersection between the two circles ($\Gamma=0.161 \angle -170.76^\circ$). The value of imaginary part of DeltaY with the sign reversed gives b2=0.594. Give an increment to the current point Γ by +270°; the new current point has $y=1+jb3 \rightarrow b3=-0.325$.

3) Being the transistor output in conjugate matching and the output network lossless also the amplifier output is matched, i.e. $\Gamma_0=0$.

Inserting the scattering parameter into the S.C. we discover the device potentially instable and the suitable for an oscillator.

1) Draw the mapping circle for $|\Gamma out|=1.3$ and select one of the intersection with the unit circle:

 Γ s=1 \angle 132.31°. The corresponding reactance results Xs=0.442.50=22.1 Ω . Evaluate Γ out=1.3 \angle -10.4 \rightarrow Zout=-5.21-j3.53. The assign Z_L=1.7+j3.52. Using the S.C. we enter this value as current point and compute $|\Gamma$ in|=1.79, so the oscillation start up is guaranteed.

3) We have at f_{osc} =425 MHz: $X_s = \omega_{osc}L = 22.1$. Replacing $\omega_{osc}=2\pi$ 425 MHz we get L=8.28 nH. 4) Using a single stub network: Φ =58.75°, b=-2.73.