RF SYSTEMS – 2nd Midterm test 1th February 2017

Exercise 1

The following scheme shows a 2 stage low noise amplifier operating at 12 GHz

The transistors are equal and are characterized by the following parameters (Z₀=50 Ω): S₁₁=0.569 \angle 78.2°, S₁₂=0.1 \angle -58.5° S₂₁=3.226 \angle -52.1° S₂₂=0.132 \angle 120.7° NF_{min}=0.51 dB Γ_{min} =0.358 \angle -137.2 r_n=0.12

The first stage must be designed for NF=0.8 dB while the second stage must be designed for the maximum transducer gain (compatibly with stability). It is also requested that the inter-stage network ("Match") operates in conjugate matching both at input and output ($\Gamma_{L1} = \Gamma^*_{out1}$, $\Gamma_{s2} = \Gamma^*_{in2}$).

- 1) Evaluate Γ_{s1} , Γ_{L1} , Γ_{s2} , Γ_{L2} in order to fit the requirements
- 2) Compute the available gain of the two stages and the noise figure of the second stage
- 3) Compute the overall transducer gain and the overall noise figure of the amplifier (Hint: the overall available gain is the sum (in dB) of the available gain of the stages, then being the output matched...)
- 4) Design the input and output transforming networks. The parameters of the first are Z_c and Φ_A ; the unknowns of the second are B₁ and B₂.

Exercise 2

The following scheme refers to an oscillator working at f_{osc} =425 MHz. The S parameters of the transistor are also reported on the figure.

The resonant circuit resonates at fres=400 MHz, where it can be replaced with a short circuit.

- 1) Imposing $|\Gamma_{out}|=1.3$ compute the values of Γ_s and Γ_L determining the start of oscillation
- 2) Verify that for $Z_s=0$ (short circuit) the start of oscillation is not possible. This happens at the resonance frequency f_{res} of the resonator.
- 3) Evaluate the values of L and C determining the requested value of Γ_s at f_{osc} =425 MHz and the resonance at f_{res} =400 MHz (Hint: the reactance of the series resonator is given by

 $X_s = \omega L - 1/\omega C$ with $\omega = 2\pi f$. The resonance frequency is given by $f_{res} = \frac{1}{2\pi\sqrt{LC}}$

4) Chose a topology and design the output network

<u>Solution</u>

Exercise 1

Inserting the S parameters in the e-Smith Chart we discover that the transistors are unconditionally stable with $G_{Tmax}=12.788$, $\Gamma_{S,opt}=0.74 \angle -81.4$, $\Gamma_{L,opt}=0.51 \angle -155.2$.

1) The first stage must be however designed for NF₁=0.8, so we draw the circle with this NF value on the S. C. Then, in order to find the value of Γ_{s1} determining the maximum available gain compatible with the assigned NF, we draw some circles with Ga=cost (< G_{Tmax}) and look for the one about tangent to the NF circle:

We found Ga1=11.96 dB. The tangent point gives $\Gamma_{s1}=0.44\angle -97.9^{\circ}$. In order to get Ga=GT we impose conjugate matching at the output of transistor 1 and we get (from the S.C.): $\Gamma_{L1}=(\Gamma_{out1})^*=0.311\angle -135^{\circ}$. The second stage operates for the maximum transducer gain so it has $\Gamma_{s2}=\Gamma_{S,opt}, \Gamma_{L2}=\Gamma_{L,opt}$.

2) The overall Ga is the sum (in dB) of the Ga of the two stages (the second is equal to G_{Tmax}), so Ga=Ga1+G_{Tmax}=24.74 dB. The noise figure of the second stage is obtained by assigning the current point on the S.C. equal to $\Gamma_{s2}=\Gamma_{S,opt}$ and asking for the optimum gamma load. We get NF₂=2.53 dB. 3) The overall transducer gain coincides with the overall Ga because the output of the second transistor is matched: GT=Ga=24.74 dB. The overall noise figure is given by the following formula:

$$(NF)_{TOT} = NF_1 + \frac{NF_2 - 1}{G_{a1}} = 10^{0.08} + \frac{10^{0.253} - 1}{10^{1.2}} = 1.252 \rightarrow 0.98 \text{ dB}$$

4) First network: we move on the circle with $|\Gamma| = |\Gamma_{s1}|$ toward the load up to the intersection with the real axis $\rightarrow \Phi_A = 48.9^{\circ}$. The impedance seen in this point is Z=2.571.50=128.55 Ω . The characteristic impedance Zc of the landa/4 transformer is the given by Zc=sqrt(128.55*50)=80.17 Ω .

Second network: draw the circle g=1 rotated by 300° toward the source. Set the current point to Γ_{L2} and store in memory. Draw the circle g=cost passing for Γ_{L2} and select one intersection between the two circles (Γ =0.385 \angle 172.69°). The value of imaginary part of DeltaY with the sign reversed gives b1=1.537. Give an increment to the current point Γ by 300°; the new current point has y=1+jb2 \rightarrow b2=-0.834.

Exercise 2

Inserting the scattering parameter into the S.C. we discover the device potentially instable and the suitable for an oscillator.

1) Draw the mapping circle for $|\Gamma out|=1.3$ and select one of the intersection with the unit circle: $\Gamma s=1 \angle 132.31^{\circ}$. The corresponding reactance results Xs=0.442·50=22.1 Ω . Evaluate $\Gamma out=1.3 \angle 10.4 \rightarrow Zout=-5.21$ -j3.53. The assign Z_L=1.7+j3.52. Using the S.C. we enter this value as current point and compute $|\Gamma in|=1.79$, so the oscillation start up is guaranteed.

2) Assigning Γ_s =-1 (short circuit) as current point we compute $|\Gamma_{out}|$ =0.957 so the oscillation cannot start.

3) We have at fosc=425 MHz: $X_s = \omega_{osc}L - \frac{1}{\omega_{osc}C} = \omega_{osc}L - \frac{\omega_{res}^2L}{\omega_{osc}} = 22.1$. Replacing $\omega_{osc} = 2\pi \cdot 425$

MHz and $\omega_{res} = 2\pi 400$ MHz we get L=72.48 nH. Then $C = \frac{1}{\omega_{res}^2 L} = 2.18$ pF.

4) Using a single stub network: Φ =58.75°, b=-2.73.