Surname \& Name
Identification Number
Signature

Exercise 1

The following scheme shows a 2 stage low noise amplifier operating at 12 GHz

The transistors are equal and are characterized by the following parameters $\left(\mathrm{Z}_{0}=50 \Omega\right)$:
$\mathrm{S}_{11}=0.569 \angle 78.2^{\circ}, \mathrm{S}_{12}=0.1 \angle-58.5^{\circ} \mathrm{S}_{21}=3.226 \angle-52.1^{\circ} \quad \mathrm{S}_{22}=0.132 \angle 120.7^{\circ}$
$\mathrm{NF}_{\min }=0.51 \mathrm{~dB} \quad \Gamma_{\text {min }}=0.358 \angle-137.2 \quad \mathrm{r}_{\mathrm{n}}=0.12$
The first stage must be designed for $\mathrm{NF}=0.8 \mathrm{~dB}$ while the second stage must be designed for the maximum transducer gain (compatibly with stability). It is also requested that the inter-stage network ("Match") operates in conjugate matching both at input and output ($\Gamma_{\mathrm{L} 1}=\Gamma^{*}{ }_{\text {out1 }}, \Gamma_{\mathrm{s} 2}=\Gamma^{*}{ }^{\mathrm{in} 2}$).

1) Evaluate $\Gamma_{\mathrm{s} 1}, \Gamma_{\mathrm{L} 1}, \Gamma_{\mathrm{s} 2}, \Gamma_{\mathrm{L} 2}$ in order to fit the requirements
2) Compute the available gain of the two stages and the noise figure of the second stage
3) Compute the overall transducer gain and the overall noise figure of the amplifier (Hint: the overall available gain is the sum (in dB) of the available gain of the stages, then being the output matched...)
4) Design the input and output transforming networks. The parameters of the first are Z_{c} and Φ_{A}; the unknowns of the second are B_{1} and B_{2}.

Exercise 2

The following scheme refers to an oscillator working at fosc $=425 \mathrm{MHz}$. The S parameters of the transistor are also reported on the figure.

The resonant circuit resonates at $\mathrm{f}_{\mathrm{res}}=400 \mathrm{MHz}$, where it can be replaced with a short circuit.

1) Imposing $\left|\Gamma_{\text {out }}\right|=1.3$ compute the values of Γ_{S} and Γ_{L} determining the start of oscillation
2) Verify that for $\mathrm{Z}_{\mathrm{s}}=0$ (short circuit) the start of oscillation is not possible. This happens at the resonance frequency $f_{r e s}$ of the resonator.
3) Evaluate the values of L and C determining the requested value of Γ_{s} at $f_{o s c}=425 \mathrm{MHz}$ and the resonance at $f_{\text {res }}=400 \mathrm{MHz}$ (Hint: the reactance of the series resonator is given by $X_{s}=\omega L-1 / \omega C$ with $\omega=2 \pi f$. The resonance frequency is given by $f_{\text {res }}=\frac{1}{2 \pi \sqrt{L C}}$
4) Chose a topology and design the output network

Exercise 1

Inserting the S parameters in the e-Smith Chart we discover that the transistors are unconditionally stable with $\mathrm{G}_{\mathrm{T} \max }=12.788, \Gamma_{\mathrm{s}, \mathrm{opt}}=0.74 \angle-81.4, \Gamma_{\mathrm{L}, \mathrm{opt}}=0.51 \angle-155.2$.

1) The first stage must be however designed for $\mathrm{NF}_{1}=0.8$, so we draw the circle with this NF value on the S. C. Then, in order to find the value of $\Gamma_{\mathrm{s} 1}$ determining the maximum available gain compatible with the assigned NF, we draw some circles with $\mathrm{Ga}=\operatorname{cost}$ ($<\mathrm{G}_{\mathrm{T} \max }$) and look for the one about tangent to the NF circle:

We found $\mathrm{Ga} 1=11.96 \mathrm{~dB}$. The tangent point gives $\Gamma_{\mathrm{s} 1}=0.44 \angle-97.9^{\circ}$. In order to get $\mathrm{Ga}=\mathrm{GT}$ we impose conjugate matching at the output of transistor 1 and we get (from the S.C.): $\Gamma_{\mathrm{L} 1}=\left(\Gamma_{\text {out }}\right)^{*}=0.311 \angle-135^{\circ}$. The second stage operates for the maximum transducer gain so it has $\Gamma_{\mathrm{s} 2}=\Gamma_{\mathrm{s}, \mathrm{opt},} \Gamma_{\mathrm{L} 2}=\Gamma_{\mathrm{L}, \mathrm{opt}}$.
2) The overall Ga is the sum (in dB) of the Ga of the two stages (the second is equal to $\mathrm{G}_{\mathrm{T} \max }$), so $\mathrm{Ga}=\mathrm{Ga} 1+\mathrm{G}_{\mathrm{Tmax}}=24.74 \mathrm{~dB}$. The noise figure of the second stage is obtained by assigning the current point on the S.C. equal to $\Gamma_{\mathrm{s} 2}=\Gamma_{\mathrm{s}, \mathrm{opt}}$ and asking for the optimum gamma load. We get $\mathrm{NF}_{2}=2.53 \mathrm{~dB}$. 3) The overall transducer gain coincides with the overall Ga because the output of the second transistor is matched: $\mathrm{GT}=\mathrm{Ga}=24.74 \mathrm{~dB}$. The overall noise figure is given by the following formula:

$$
(N F)_{\text {TOT }}=N F_{1}+\frac{N F_{2}-1}{G_{a 1}}=10^{0.08}+\frac{10^{0.253}-1}{10^{1.2}}=1.252 \rightarrow 0.98 \mathrm{~dB}
$$

4) First network: we move on the circle with $|\Gamma|=\left|\Gamma_{\mathrm{s} 1}\right|$ toward the load up to the intersection with the real axis $\rightarrow \Phi_{\mathrm{A}}=48.9^{\circ}$. The impedance seen in this point is $\mathrm{Z}=2.571 \cdot 50=128.55 \Omega$. The characteristic impedance Zc of the landa $/ 4$ transformer is the given by $\mathrm{Zc}=\operatorname{sqrt}(128.55 * 50)=80.17 \Omega$.

Second network: draw the circle $g=1$ rotated by 300° toward the source. Set the current point to $\Gamma_{\mathrm{L} 2}$ and store in memory. Draw the circle $\mathrm{g}=$ cost passing for $\Gamma_{\mathrm{L} 2}$ and select one intersection between the two circles $\left(\Gamma=0.385 \angle 172.69^{\circ}\right)$. The value of imaginary part of DeltaY with the sign reversed gives $\mathrm{b} 1=1.537$. Give an increment to the current point Γ by 300°; the new current point has $\mathrm{y}=1+\mathrm{jb} 2 \rightarrow$ b2 $=-0.834$.

Exercise 2

Inserting the scattering parameter into the S.C. we discover the device potentially instable and the suitable for an oscillator.

1) Draw the mapping circle for $\mid \Gamma$ out $\mid=1.3$ and select one of the intersection with the unit circle: $\Gamma \mathrm{s}=1 \angle 132.31^{\circ}$. The corresponding reactance results $\mathrm{Xs}=0.442 \cdot 50=22.1 \Omega$. Evaluate Γ out $=1.3 \angle-$ $10.4 \rightarrow$ Zout $=-5.21-\mathrm{j} 3.53$. The assign $\mathrm{Z}_{\mathrm{L}}=1.7+\mathrm{j} 3.52$. Using the $\mathrm{S} . \mathrm{C}$. we enter this value as current point and compute $|\Gamma \mathrm{in}|=1.79$, so the oscillation start up is guaranteed.
2) Assigning $\Gamma_{\mathrm{s}}=-1$ (short circuit) as current point we compute $\mid \Gamma$ out $\mid=0.957$ so the oscillation cannot start.
3) We have at fosc $=425 \mathrm{MHz}: \quad X_{s}=\omega_{\text {osc }} L-\frac{1}{\omega_{\text {osc }} C}=\omega_{\text {osc }} L-\frac{\omega_{\text {res }}^{2} L}{\omega_{\text {osc }}}=22.1$. Replacing $\omega_{\text {osc }}=2 \pi \cdot 425$

MHz and $\omega_{\text {res }}=2 \pi \cdot 400 \mathrm{MHz}$ we get $\mathrm{L}=72.48 \mathrm{nH}$. Then $C=\frac{1}{\omega_{\text {res }}^{2} L}=2.18 \mathrm{pF}$.
4) Using a single stub network: $\Phi=58.75^{\circ}, \mathrm{b}=-2.73$.

