RF SYSTEMS

Written Test of July $\mathbf{6}^{\text {th }}, 2016$

Surname \& Name

Identification Number

Signature

Exercise 1

Consider a spacecraft for deep-space exploration in orbit around Jupiter. It is equipped with a digital transmitter operating at 12 GHz (transmitted power $\mathrm{P}_{\mathrm{T}}=20 \mathrm{~W}$). The antenna of the vehicle is a 5 m dish with aperture efficiency $e_{a}=0.6$ and efficiency $\eta=0.8$. The receiving station on the Earth has a 70 m dish antenna with $\mathrm{e}_{\mathrm{a}}=0.65$ and $\eta=0.9$; the receiver exhibits a overall system noise temperature of $\mathrm{T}_{\text {sys }}=25^{\circ} \mathrm{K}$.
Imposing the maximum BER at the receiver output equal to 10^{-3}, the required $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$ ration must be 4.75 (6.77 dB).

1) Evaluate the gain of both antennas and the half-power beamwidth $\theta_{3 \mathrm{~dB}}$ of the Earth station antenna
2) Evaluate the maximum data rate R of the link assuming the path length $r=0.78 .10^{9} \mathrm{Km}$ and the additional link attenuation $\mathrm{La}=5 \mathrm{~dB}$ (due to atmospheric losses).
3) If there is an error in the antenna pointing equal to $\theta_{3 \mathrm{~dB}} / 2$, what is the resulting degraded BER for the same data rate previously evaluated? Assume:

$$
B E R=\frac{1}{2} \operatorname{erfc}(\sqrt{x}) \cong-0.0012541 x^{3}+0.016458 x^{2}-0.073553 x+0.11351 \quad\left(x=\mathrm{E}_{b} / \mathrm{N}_{0}\right)
$$

Exercise 2

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{a}}=10^{\circ} \mathrm{K} \\
& \mathrm{NF}_{\text {LNA }}=? \\
& \mathrm{G}_{\mathrm{LNA}}=20 \mathrm{~dB} \\
& \mathrm{~A}_{\mathrm{f}}=0.5 \mathrm{~dB} \\
& \mathrm{~T}_{\mathrm{rec}}=100{ }^{\circ} \mathrm{K}
\end{aligned}
$$

The scheme in the above figure represents the front-end of the Earth Station receiver of exercise 1 (note that the low noise amplifier and the filter are cooled at $20^{\circ} \mathrm{K}$). Assuming the parameters above reported and the imposed system temperature $\mathrm{T}_{\text {sys }}=25^{\circ} \mathrm{K}$, evaluate the required value of the LNA noise figure. If the system SNR must be 10 dB , what is the maximum system bandwidth?

Exercise 3

We want design the oscillator in the following figure, operating at 5 GHz :

The scattering parameters of the transistor are given by:
$\mathrm{S}_{11}=0.844 \angle-62.3^{\circ}, \mathrm{S}_{21}=5.273 \angle 121.7^{\circ}, \mathrm{S}_{12}=0.069 \angle 42.7^{\circ}, \mathrm{S}_{22}=0.521 \angle-52.6^{\circ}$
a) Select a value for Γ_{s} and evaluate the electrical length Φ_{s} of the first line. (Hint: set $\left|\Gamma_{\text {out }}\right|=1.2$ and select the Γ_{s} which determines the minimum value of Φ_{s})
b) Design the output network, once the required value of Γ_{L} has been computed

