RF SYSTEMS

Mid-course Test - November 21 ${ }^{\text {th }}, 2016$

Surname \& Name

Identification Number

Signature

Exercise 1

It is given the following antenna directivity function: $f(\theta, \varphi)=\frac{\cos ^{2}\left(\frac{\pi}{2} \cos \left(\theta+\frac{\pi}{2}\right)\right)}{\sin ^{2}\left(\theta+\frac{\pi}{2}\right)}$.
The operating frequency is 3 GHz .

1) What is the direction $\theta_{\text {MAX }}$ for which $f=f_{\max }=1$? Evaluate the 3 dB beamwidth $\left(\theta_{3 \mathrm{~dB}}\right)$ around this direction
2) Assuming that the emitted power is uniformly distributed on the spherical cap closing the cone of aperture $2 \theta_{B}$ equal to $\theta_{3 d B}$, evaluate the directivity gain $D_{M A X}$.
3) It is known that $\frac{1}{r^{2}} \iint_{\Sigma} f(\theta, \varphi) \cdot d \Sigma=1.745$ where Σ is the surface of the sphere of radius r centered on the antenna. Evaluate the exact value of $D_{\text {MAX }}$.
4) It is also known the radiation impedance $\mathrm{R}_{\mathrm{rad}}=50 \Omega$ and the efficiency factor $\eta=0.85$. Using the antenna in a receiver, evaluate the power P_{L} delivered to the receiver $\left(\mathrm{Z}_{\mathrm{L}}=50 \Omega\right)$ when the incident power density S_{R} on the antenna is $2 \cdot 10^{-6} \mathrm{~W} / \mathrm{m}^{2}$.
5) Suppose that this antenna is used (both at T and R) in a communication system with transmitted power $\mathrm{P}_{\mathrm{T}}=30 \mathrm{dBm}$, equivalent noise temperature of the receiver $\mathrm{T}_{\mathrm{eq}}=350^{\circ}$, signal bandwidth $\mathrm{B}=30 \mathrm{MHz}$:

Evaluate the maximum distance L for which the $S N R$ at the receiver R is equal to 30 dB .

Exercise 2

Consider the following block diagram referring to the RF front-end of a receiver operating in the band $6-6.5 \mathrm{GHz}$ (10 channels with 50 MHz width):

Assume the filter ideal in the stopband and equivalent to an attenuator $\left(\mathrm{A}_{\mathrm{f}}\right)$ in the passband.

1) Assuming that the local oscillator operates at frequencies below the RF band ($6-6.5 \mathrm{GHz}$), determine the range of the LO frequencies foL imposing the intermediate frequency $\mathrm{f}_{\mathrm{IF}}=470$ MHz .
2) What is the range of frequencies of the image band?
3) Evaluate the equivalent noise temperature T_{eq} of the RF front-end. Compute also the overall noise power at the mixer output (Assume the signal bandwidth $B=50 \mathrm{MHz}$)
4) We know the minimum power density of the radiation incident on the antenna $S_{R}=10^{-8} \mathrm{~W} / \mathrm{m}^{2}$. Evaluate the antenna gain G_{A} in order the signal-to-noise-ratio of the RF front-end is at least 15 dB (refer to the channel at $\mathrm{f}_{\mathrm{RF}}=6 \mathrm{GHz}$)
5) Assume the receiver is tuned at $\mathrm{f}_{\mathrm{RF}}=6.425 \mathrm{GHz}$ and the received power at antenna output is $\mathrm{Pr}=-80 \mathrm{dBm}$. In the adjacent channel at $\mathrm{f}_{\mathrm{ADJ}}=6.375 \mathrm{GHz}$ there is a strong interference constituted by 2 -tone spaced by 40 MHz (and centered at $\mathrm{f}_{\mathrm{ADJ}}$) and mean power $\mathrm{P}_{\mathrm{ADJ}}=-30$ dBm . Note that the LNA amplify both signals because they are in the tuning band (the interference at $\mathrm{f}_{\mathrm{ADJ}}$ is finally removed by the IF filter)
a. Verify that one of the intermodulation tones produced in the LNA by the signal at $\mathrm{f}_{\text {ADJ }}$ falls inside the received channel ($6.4-6.45 \mathrm{GHz}$)
b. Evaluate the minimum IP3 of LNA to get the $\mathrm{SNR}=\mathrm{Po} / \mathrm{P}_{\text {int }}=30 \mathrm{~dB}$, with Po the power at $f_{\text {RF }}$ at the LNA output and $\mathrm{P}_{\text {int }}$ the power in the intermodulation line.
c. Assuming the IIP3 of the mixer equal to 0 dBm evaluate the IIP3 of the whole RF front-end

Solution

Exercise 1

1) $\theta_{\text {MAX }}=0^{\circ}$. Drawing graphically the function $\mathrm{f}(\theta)$ it has:

From the graph $f(\theta)=0.5$ for $\theta=39.06^{\circ}$. Then $\theta_{3 \mathrm{~dB}}=2 * 39.06=78.12^{\circ}$
2) $D_{M A X}=\frac{2}{\left(1-\cos \left(\theta_{B}\right)\right)}=\frac{2}{\left(1-\cos \left(\frac{\theta_{3 d B}}{2}\right)\right)}=8.955$
3) $\left(D_{M A X}\right)_{\text {exact }}=\frac{4 \pi}{\frac{1}{r^{2}} \iint_{\Sigma} f(\theta, \varphi) \cdot d \Sigma}=\frac{4 \pi}{1.745}=7.2$
4)
$A_{e}=\frac{G \cdot \lambda^{2}}{4 \pi}=\frac{\eta \cdot D_{\max } \cdot \lambda^{2}}{4 \pi}=\frac{0.85 \cdot 7.2 \cdot\left(3 \cdot 10^{8} / 3 \cdot 10^{9}\right)^{2}}{4 \pi}=0.0049 \mathrm{~m}^{2}$
$P_{r}=A_{e} S_{R}=9.8 \cdot 10^{-9} \mathrm{~W}(-50.09 \mathrm{dBm})$
Being the receiver input matched to the antenna (loss resistance can be discarded), $P_{L}=P r=-50.09 \mathrm{dBm}$
5) The Friis equation for the considered link is given by:
$P_{r}=P_{t}-L_{f}+10 \log \left(2 \eta D_{M A X}\right)=45.73-L_{f}$
with $L_{f}=20 \cdot \log \left(\frac{4 \pi L}{\lambda}\right)$ and $\lambda=0.1 \mathrm{~m}$.
The noise power at the receiver input is $\mathrm{P}_{\mathrm{N}}=\mathrm{K} \cdot \mathrm{T}_{\mathrm{eq}} \cdot \mathrm{B}=1.45 \cdot 10^{-13} \mathrm{~W}$ (-98.39 dBm). Imposing SNR $=P_{r} / P_{N}=30 \mathrm{~dB}$ we get $P r=-68.39 \mathrm{dBm}$. From the above equation:
$L_{f}=45.73-(-68.39)=114.12 \mathrm{~dB} \rightarrow \mathrm{~L}=4.04 \mathrm{Km}$.

Exercise 2

1) The RF band is f_{IF} above foL, then $\mathrm{f}_{\mathrm{OL}}=\mathrm{f}_{\mathrm{RF}}-\mathrm{f}_{\mathrm{IF}}=5.53-6.03 \mathrm{GHz}$
2) The image band is $f_{\text {IF }}$ below $f_{\text {OL }}$, then $f_{\mathrm{IM}}=\mathrm{f}_{\text {OL }}-\mathrm{f}_{\mathrm{IF}}=5.06-5.56 \mathrm{GHz}$
3) Consider the equivalent block diagram referring to noise temperature:

It has:
$a_{f}=1.059, a_{c}=2.818 T_{f}=T_{0}\left(10^{A_{f} / 10}-1\right)=17.18^{\circ} \mathrm{K}, g_{L N A}=31.62$
Evaluation of T_{IF} :

$$
T_{I F}=\left(T_{a}+T_{f}\right) \frac{g_{L N A}}{a_{f} a_{c}}+2 T_{L N A} \frac{g_{L N A}}{a_{c}}+T_{S S B} \frac{1}{a_{c}}=4562.016{ }^{\circ} \mathrm{K}
$$

The equivalent noise temperature at input:

$$
T_{e q}=T_{I F} \frac{a_{f} a_{c}}{g_{L N A}}=430.68{ }^{\circ} \mathrm{K}
$$

4) The equivalent noise power at input is given by:
$\mathrm{P}_{\mathrm{N}}=\mathrm{K} \cdot \mathrm{T}_{\mathrm{eq}} \cdot \mathrm{B}=2.97 \cdot 10^{-13} \mathrm{~W}(-95.27 \mathrm{dBm})$.
Imposing $\mathrm{SNR}=\mathrm{Pr}-\mathrm{P}_{\mathrm{N}}=15 \mathrm{~dB}$ we get $\mathrm{Pr}=-80.27 \mathrm{dBm}\left(9.4 \cdot 10^{-12} \mathrm{~W}\right)$.
Being $\operatorname{Pr}=\mathrm{A}_{\mathrm{e}} \cdot \mathrm{S}_{\mathrm{R}} \rightarrow \mathrm{Ae}=9.4 \cdot 10^{-4} \mathrm{~m}$ and $\mathrm{G}=\left(4 \pi / \lambda^{2}\right) \mathrm{A}_{\mathrm{e}}=4.7236(6.74 \mathrm{~dB})$
The wavelength λ is given by $3 \cdot 10^{8} / 6 \cdot 10^{9}=5 \cdot 10^{-2} \mathrm{~m}$.
5) The intermodulation tone are located at $\mathrm{f}_{0} \pm 1.5 \Delta=6.375 \pm 0.06=(6.435,6.315)$. The first tone is inside the received channel.
The power received in the desired channel after the LNA is given by $\mathrm{Po}=-80-0.25+15=$ -65.25 dBm . The power Pint in the intermodulation line must be 30 dB below Po, then Pint $=-95.25 \mathrm{dBm}$. The power in adjacent channel at LNA output is $\mathrm{P}^{\prime}{ }_{\mathrm{ADJ}}=\mathrm{P}_{\mathrm{ADJ}^{\prime}}+\mathrm{G}_{\mathrm{LNA}}-\mathrm{A}_{\mathrm{f}}=$ -15.25 dBm (mean power). Imposing Pint=3($\mathrm{P}^{\prime}{ }_{\text {ADJ }}-3$)-2IP3, we obtain IP3=(3(P' ${ }_{\text {ADJ }}-3$)Pint) $/ 2=20.25 \mathrm{dBm}$.
The overall IIP3 of the RF front-end can be derived from:

$$
\left(\frac{1}{i i p_{3}}\right)_{\text {tot }}^{2}=\left(\frac{g_{L N A}}{a_{f} i_{3, L N A}}\right)^{2}+\left(\frac{g_{L N A}}{a_{f} i i p_{3, M I X}}\right)^{2} \rightarrow \mathrm{iip}_{3, \text { tot }}=0.0335 \mathrm{~mW}\left(\mathrm{IIP}_{3, \text { tot }}=-14.75 \mathrm{dBm}\right)
$$

