RF SYSTEMS Written Test of 28 September 2015

Surname & Name	
Identification Number	
Signature	

Exercise 1

Consider the following receiver operating at 15 GHz (signal bandwidth B=70 MHz), with the specified parameters of the filter, mixer and antenna:

It is now requested that:

- the minimum power of the received signal at the antenna port is -43 dBm

- the minimum power level of the signal at IF (P_{IF}) must be -30 dBm

- the S/N (power) ratio at IF must be at least 55 dB (S/N=P_{IF}/ $N_{IF})$

Compute the gain G_{RF} and the noise figure NF of the LNA so that the above requirements are satisfied (assume that the filter eliminates completely the image band)

<u>Hint</u>: The noise power at IF can be expressed as $N_{IF}=K^{-}T_{IF}B$, where K is the Boltzmann Constant (1.38^{-10⁻²³} W/°K⁻Hz); T_{IF} is the equivalent temperature at IF; B is the signal bandwidth.

Exercise 2

A satellite earth station operates at 6 GHz with a geostationary satellite (distance: 36000 Km). The parameters of the employed antennas are the following:

Earth station:

Gain G_T =55 dB, directivity function f_T = $cos(110 \ \theta_T)$

Satellite:

Gain G_s to compute, directivity function $f_S = cos(\theta_S)$

The transmitted power from the earth station is 5.5 kW.

- a) Assuming initially the two antennas perfectly aligned ($\theta_{T,S}=0$), evaluate the gain G_s of the satellite antenna in order the received power (P_R) is \geq -43 dBm.
- b) Let assume now that the earth antenna is misaligned ($\theta_T \neq 0$). Evaluate the maximum value of θ_T that determines the received power to decrease by 3 dB (note that the satellite antenna remains optimally directed, so $f_S=1$)

Exercise 3

The following figure represents the general configuration of a microwave oscillator. Using the reported scattering parameters of the active device, evaluate the reflection coefficients Γ_1 and Γ_2 which ensure the start of oscillation (the magnitude of Γ_1 must be imposed equal to 1).

<u>Hint</u>: draw the mapping circle of the source with $|\Gamma_{out}|=1.2$ for determining Γ_1 . For evaluating Γ_2 determine the value of Z_{out} corresponding to the selected Γ_1 and assign $Z_2=|R_{out}/3|-jX_{out}$.

Then design the network B, using the scheme in the following figure (assume $Z_c=50$ Ohm and evaluate the electrical length ϕ_0 and the susceptance B):

Solution

Exercise 1

From the imposed signal power at IF the gain G_{RF} is obtained:

$$P_{IF} = P_{in} \frac{G_{RF}}{A_0 A_C} \implies G_{RF} = \frac{P_{IF}}{P_{in}} A_0 A_C = 17.5 \text{ dB}$$

The equivalent noise temperature at IF is obtained from the imposed S/N:

$$N_{IF} = \frac{P_{IF}}{S/N} = K \cdot T_{IF} \cdot B = 3.16 \cdot 10^{-12} W \implies T_{IF} = \frac{3.16 \cdot 10^{-12}}{K \cdot B} = 3273.6^{\circ} \text{K}$$

T_{IF} results from the following equivalent representation:

$$T_{RF} \xrightarrow{T_{RF}} \overrightarrow{G_{RF}} \xrightarrow{T_{f}} \overrightarrow{A_{0}} \xrightarrow{T_{SSB}} \overrightarrow{A_{C}} \xrightarrow{T_{IF}} \overrightarrow{A_{C}} \overrightarrow{A_{C}} \xrightarrow{T_{IF}} \overrightarrow{A_{IF}} \xrightarrow{T_{IF}} \overrightarrow{A_{IF}} \xrightarrow{T_{IF}} \overrightarrow{A_{IF}} \overrightarrow{A_{IF}} \xrightarrow{T_{IF}} \overrightarrow{A_{IF}} \overrightarrow{A_{IF}} \xrightarrow{T_{IF}} \overrightarrow{A_{IF}} \xrightarrow{T_{IF}} \overrightarrow{A_{IF}} \xrightarrow{T_{IF}} \overrightarrow{A_{IF}} \overrightarrow{A_{IF}} \xrightarrow{T_{IF}} \overrightarrow{A_{IF}} \xrightarrow{T_{IF}} \overrightarrow{A_{IF}} \xrightarrow{T_{IF}} \overrightarrow{A_{IF}} \xrightarrow{T_{IF}} \overrightarrow{A_{IF}} \overrightarrow{A_{IF}} \xrightarrow{T_{IF}} \overrightarrow{A_{IF}} \overrightarrow{A_{IF}} \xrightarrow{T_{IF}} \overrightarrow{A_{IF}} \overrightarrow{A_{IF}} \overrightarrow{A_{IF}} \overrightarrow{A_{IF}} \xrightarrow{T_{IF}} \overrightarrow{A_{IF}} \overrightarrow{A_{IF$$

where the parameter T_f is given by $T_f = T_0 (A_0 - 1)$. The unknown is represented by T_{RF} , which results:

$$T_{RF} = \frac{\left[\left(A_{C}T_{IF} - T_{SSB}\right)A_{0} - T_{f}\right]}{G_{RF}} - T_{A} = 115.46 \text{ }^{\circ}\text{K}$$

Finally the noise figure of the amplifier is given by:

$$NF = 10 \cdot \log_{10} \left(1 + \frac{T_{RF}}{T_0} \right) = 1.45 \text{ dB}$$

Esercizio 2

Link budget equation (in dB) with aligned antennas:

$$P_{S,dBm} = P_{T,dBm} + 20 \cdot \log(\lambda) - 20 \cdot \log(4\pi R) + G_{T,dB} + G_{S,dB}$$

Substituting: $P_{T,dBm}$ =67.4 dBm, $P_{S,dBm}$ =-43 dBm, λ =50 mm, R=36000 Km, G_T=55 dB we get:

$$G_{S,dBm} = -43 - 67.4 - 20 \cdot \log(0.05) + 20 \cdot \log(4\pi \cdot 36 \cdot 10^6) - 55 = 33.73 \text{ dB}$$

Evaluation of the misalignment angle of the earth antenna that determine 3 dB reduction of the received power:

$$P_{S,dBm} - 3 = P_{T,dBm} + 20 \cdot \log(\lambda) - 20 \cdot \log(4\pi R) + G_{T,dB} + G_{S,dB} + 10 \cdot \log(\cos(110 \cdot \theta))$$

Then:

$$10 \cdot \log(\cos(110 \cdot \theta)) = -3$$
$$\theta = \frac{a\cos(10^{-0.3})}{110} = 0.0095 \text{rad} \quad (0.545^\circ)$$

Exercise 3

The assigned transistor is potentially instable (k=0.53), so it can be used for realizing an oscillator. Using the electronic Smith Chart, the mapping circle with $|\Gamma_{out}|=1.2$ is drawn. The two intersections with the outer circle are: $\Gamma_{1a}=1\angle 23^{\circ}$ and $\Gamma_{1b}=1\angle -161.5^{\circ}$

Selecting "S Param." \rightarrow "Gamma OUT" the reflection coefficient at port 2 is obtained: $\Gamma_{out,a}=1.2\angle -168^{\circ} \ (\Gamma_{out,a}=1.2\angle -28.7^{\circ})$ The S. chart reports also the normalized impedance $Z_{out,a}=-0.092$ -j $0.103 \ (Z_{out,b}=-1.31$ -j3.44).

Imposing the condition suggested in the text, the values of Z₂ and Γ_2 are then obtained: $Z_{2a} = 0.03 + j0.103 \rightarrow \Gamma_{2a} = 0.94 \angle 168.2^{\circ} (Z_{2b} = 0.44 + j3.44 \rightarrow \Gamma_{2b} = 0.935 \angle 32^{\circ})$

The matching network is designed according the well-known procedure:

φ₀=15.85°, b=5.5

 $\phi_0=63.7^\circ, b=-5.3$